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With the recent advances of data acquisition techniques, the compression of various dynamic mesh sequence
data has become an important topic in computer graphics community. In this paper, we present a new spatio-
temporal segmentation-based approach for the adaptive compression of the dynamic mesh sequences. Given
an input dynamic mesh sequence, we first compute an initial temporal cut to obtain a small subsequence
by detecting the temporal boundary of dynamic behavior. Then, we apply a two-stage vertex clustering on
the resulting subsequence to classify the vertices into groups with optimal intra-affinities. After that, we
design a temporal segmentation step based on the variations of the principle components within each vertex
group prior to performing a PCA-based compression. Furthermore, we apply an extra step on the lossless
compression of the PCA bases and coeflicients to gain more storage saving. Our approach can adaptively
determine the temporal and spatial segmentation boundaries in order to exploit both temporal and spatial
redundancies. We have conducted extensive experiments on different types of 3D mesh animations with
various segmentation configurations. Our comparative studies show the advantages of our approach for the
compression of 3D mesh animations.

CCS Concepts: » Computing methodologies — Computer graphics; Animation.
Additional Key Words and Phrases: dynamic mesh sequences, animation compression, adaptive spatio-temporal
segmentation, data compression
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1 INTRODUCTION

With the rapid advancements of various technologies for 3D mesh animation acquisition, 3D mesh
animation data is becoming another popular media type. While users can capture and generate 3D
mesh animations with various tools, the amount of 3D mesh animation data has also been increasing.
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As a relatively new type of the growing data, many research efforts on the processing and analysis
of 3D mesh animations have been conducted in recent years. Among them, compression is one of
the key techniques for the storage, transfer, and display of 3D mesh animation data towards broad
applications.

To date, researchers have developed a variety of efficient compression techniques for 2D video
such as MPEG, H.263, and H.265. However, these compression methods for 2D video cannot be
directly applied to 3D mesh animations due to the fundamental structure and representation
differences between 2D video and 3D mesh animation data. For example, 3D shapes are often
highly sensitive to vertex outliers, while an irregular pixel in an image may not be even visually
noticeable. Therefore, with the strict requirements of 3D shape quality, efficient compression of 3D
mesh animation data has become an increasingly important research topic.

The key information of a 3D mesh animation is its dynamic behavior, which drives the defor-
mations of different mesh surfaces. As reported in existing literature, we can achieve a better
performance on the compression of 3D mesh animations with repetitive motions or rigid mesh seg-
ments, which contain significant redundancies either temporally or spatially [30, 47, 53]. Therefore,
it is important to exploit the dynamic behaviors based on both spatial and temporal segmentation
within a 3D mesh animation for effective data compression. However, due to the high complexity and
the large data size, it remains a challenge to jointly explore the spatial and temporal segmentation
to further improve the performance of compressing 3D mesh animations.

In this paper, we propose an adaptive spatio-temporal segmentation based model for the compres-
sion of 3D mesh animations. Specifically, we first introduce a temporal segmentation scheme that
explores the temporal redundancy by automatically determining the optimal temporal boundaries.
Then, we also introduce a novel two-stage vertex clustering approach to explore the spatial redun-
dancy by automatically determining the number of the vertex groups with optimal intra-affinities.
Based on the above adaptive spatio-temporal segmentation schemes, we develop a full scheme of
its application for the compression of 3D mesh animations. Through many experiments, we show
the effectiveness and efficiency of our approach compared to the state of the art mesh animation
compression algorithms.

The contributions of this work can be summarized as follows:

e We develop an adaptive spatio-temporal segmentation approach for 3D mesh animations by
exploiting the spatial and the temporal redundancies simultaneously based on the dynamic
behaviors.

e We propose a compression model for 3D mesh animations by coupling with the novel adaptive
spatio-temporal segmentation. Through extensive experiments as well as direct comparisons
with state-of-the-art methods, we show the effectiveness and efficiency of our compression
model.

The remainder of the paper is organized as follows. We first review previous and related works
on the compression of 3D mesh animations in Section 2. In Section 3, we briefly give the overview
of our compression method. Then, we present the details of our spatio-temporal segmentation
model and its application to the compression of 3D mesh animations in Section 4. The experimental
results by our approach with comparative studies are shown in Section 5. Finally, we conclude this
work in Section 6.

2 RELATED WORKS

While motion capture data is becoming important in many areas including graphics, visualiza-
tion, gaming, and medical applications, compression of motion capture data has been thoroughly
studied using various techniques of wavelets [5], quadratic Bézier curve fitting [28], model-based
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indexing [6], motion pattern-based indexing [17], etc. To achieve a high efficiency, Kwak et al.
proposed a hybrid scheme that is similar to hybrid video encoders, which contains predictive
coding, DCT transform, quantization, and entropy coding steps [29]. Furthermore, Firouzmanesh et
al. incorporate the factor of attention simulation in the model for fast compression [13]. In the work
of [57], Wang et al. proposed a novel Alpha Parallelogram Predictor with context-based arithmetic
coding to correct the predictions for the lossless compression of motion captured data. However,
existing compression methods for motion captured data cannot be directly applied to compress
dynamic mesh sequences due to significantly more intensive spatial redundancies of the dynamic
meshes.

The compression of dynamic mesh sequences has been a persistent research topic in the past
several decades. In [39], Maglo et al. classify existing 3D mesh animation compression methods into
five different categories: prior segmentation based, PCA-based, spatio-temporal prediction based,
wavelets based, and the MPEG framework based. In this paper, we group the existing methods into
two general types: non-segmentation based methods and segmentation based methods. Below we first
review state-of-the-art 3D mesh segmentation methods. Then, we focus on the non-segmentation
based compression methods, and the segmentation based compression methods including spatial
segmentation based methods and temporal segmentation based methods.

3D mesh segmentation: Au et al. [3] present a 3D mesh skeleton extraction method by mesh
contraction while preserving the shape of the contracted mesh and the original topology. This
method generates the skeleton-vertex correspondence, which automatically leads to the spatial
segmentation of a 3D mesh. Ren et al. [43] present a region-growing based image segmentation,
which gradually merges neighboring small regions based on region weights and boundary features.
Hierarchical segmentation algorithms can also be applied for 3D meshes. Tsuchie et al. [50] present
a 3D scanned mesh segmentation by using the Student-t mixture model to cluster the 3D vertices,
which are featured with 3 principals, i.e., curvatures, coordinates, and normals. Nowadays, 3D mesh
datasets are increasing available due to the advancement of data acquisition techniques, which
enable us to apply advanced deep learning algorithms and tools for 3D model segmentation [9].
Kalogerakis et al. [25] present a learning based 3D mesh segmentation framework, where the
conditional random field model based object functions are used to evaluate the consistency of
triangle labels and the consistency among their neighborhoods. George et al. [14] present an active
learning based framework to predict the 3D mesh segmentation, which couples with an quality
measurement step to suggest the ordering of the segments to ensure high quality segmentation
results. George et al. [15] present a robust conformal factor for convolutional neural networks
(CNN) to improve efficiency of learning based methods for 3D mesh segmentation. While most of
the existing 3D mesh segmentation methods aim to obtain smooth and finely shaped boundaries
for functional or semantic parts, in this work, we focus on the compression and thus do not have
strict requirements on segmentation boundary shapes.

Non-segmentation based compression: Among the existing methods, a large portion of the
methods take a matrix form of the 3D mesh animation, on which many of classical data compression
methods and algorithms can be applied, including Principal Component Analysis (PCA) [2, 22, 35],
linear prediction encoders [26, 46, 47, 61], wavelet decomposition [18, 41], and the Moving Picture
Experts Group (MPEG) framework [40]. PCA is a classical method that can decompose a large matrix
as the product of two much smaller matrices, with minimal information loss. Following the work of
[2], Lee et al. [32] apply PCA to 3D mesh animation data after removing its rigid transformations.
Later, researchers have used the linear prediction theory to further encode the resulting coefficients
from PCA [26, 52, 52, 54]. Similarly, researchers have proposed a Laplacian-based spatio-temporal
predictor [53] or curvature-and-torsion based analysis [60] to encode the vertex trajectories for
dynamic meshes. Moreover, Liu et al. [35] use a subspace optimization technique to accelerate the
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PCA iterations, and Hou et al. [22] formulate PCA to an optimization problem with constraints
on the orthogonality and solve the problem with an inexact augmented Lagrangian multiplier
method. The above non-segmentation compression methods improve either the efficiency or the
effectiveness of PCA-based 3D mesh animation compression. However, they assume an entire
sequence as the given input, and do not explicitly exploit the dynamic behaviors enclosed in the
input animation.

Segmentation based compression: The key information of a 3D mesh animation is its enclosed
dynamic behavior; therefore, it is important to exploit the dynamic behavior coherence in 3D mesh
animations for effective compression, using either spatial segmentation or temporal segmentation
methods.

Spatial segmentation based compression: The key to spatial segmentation of a 3D mesh animation
is to understand its semantic behaviors, e.g., the body and limb movements of human actions. Many
previous methods have been proposed to compute the spatial segmentation for 3D mesh animations,
which can generate different spatial segmentation schemes for animations with different motions.
These spatial segmentation results can be useful for the skeleton extraction/rigging for animation
generation [11, 24, 27, 31] and semantic representation of the dynamic meshes towards shape
similarity measurement [1, 33, 58], etc.

The spatial segmentation is also useful to reveal the spatial redundancies for the compression
of the 3D mesh sequences. Hijiri et al. [20] separately compress the vertices of each object with
the same movements to obtain an overall optimal compression rate. In order to adapt spatial
segmentation for compression, Sattler et al. [44] proposed an iterative clustered PCA method
to group the vertex trajectories that share similar Principal Component (PC) coefficients and
then further compress each cluster separately. The main limitation is its heavy computational cost.
Similarly, Ramanathan et al. [42] compute the optimal vertex clustering for the optimal compression
ratio. However, all the above methods assume the entire animation has been given at the beginning.

Temporal segmentation based compression: The objective of temporal segmentation is mainly to
chop a 3D mesh animation into sub-sequences, each of which represents different dynamic behavior.
Temporal segmentation has been exploited for the compression of motion capture data [16, 17, 44,
63], but the efficiencies of these methods for 3D mesh animation compression may be significantly
decreased since 3D mesh surfaces typically have much more dense vertices and additional topology
than motion capture data [38]. Given a mesh sequence, after partitioning the sequence into clusters
with similar poses, researchers either apply PCA to compress each group to achieve the optimal
compression ratio [36] or extract a key-frame of each cluster and encode the rest frames as the
blending weights of the extracted key-frames [19]. Similarly, in [7], Chen et al. apply the manifold
harmonic bases to characterize the primary poses (key-frames) and the deformation transfer
technique to recover the geometric details of each frame within a cluster. This reduce the storage
since only a small number of the key-frames and a few coefficients would be needed for animation
decompression. Yang et al. [59] group the temporal frames with their motion trajectory changes,
and then apply the spectral graph wavelet transform block encoding to convert the dynamic mesh
sequence into a multi-resolution representation for the progressive streaming of the mesh sequence.
Recently, Lalo et al. [30] proposed an adaptive Singular Value Decomposition (SVD) coefficient
method for 3D mesh animation compression. They first divide a mesh sequence into temporal
blocks of the same length and treat the first block with SVD. Then, the following blocks are treated
with the adaptive bases from the previous block without solving the full SVD decomposition for
each block, which reduces the computing time.

In summary, spatial and temporal segmentations can reveal the spatial and temporal redundancies
within 3D mesh animations, respectively, which aid the development of effective compression
algorithms.
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To take the advantages of both spatial and temporal segmentations, the new compression scheme
for 3D mesh animations presented in this work simultaneously exploits both spatial and temporal
redundancies.

3 OVERVIEW OF OUR APPROACH

In general, dynamic mesh sequences mainly have two different forms: time-varying meshes and
deforming meshes. A time-varying mesh may have different numbers of vertices and different
topological connectivities at different frames, whereas a deforming mesh has a fixed topology
across frames. Note that we can always compute the inter-frame vertex correspondence to convert
a time-varying mesh into a deforming mesh [49]. For the sake of simplicity, we focus on the
deforming mesh data in this work.

The following is a list of key notations used in this paper:

y'™it: The temporal range to detect dynamic behavior for the full 3D mesh.

y™?*: The temporal range to detect dynamic behavior for a vertex group (spatial segment).
ri"t; The temporal boundary frame for the Initial Temporal Cut being detected within the
temporal range of y"’, ie., /™! < yinit,

7: The temporal boundary frame for the Temporal Segmentation being detected within the
temporal range of y™*, i.e., r < y™**,

b: The varying frame index while computing the candidate frame boundaries.

w: Information persistence rate for Principal Component Analysis (PCA).

w: Window size while scanning for the temporal boundaries.

5': The i-th vertex group (spatial segment).

e N,: The total number of vertex groups (spatial segment).

We define the trigger conditions for the two important steps in our method. (1) Initial Temporal
Cut: given the maximal length y"? if any dynamic behavior has been detected in the mesh sequence
(with no more than y'"! frames) (Section 4.1), and (2) Temporal Segmentation: given the maximal
length y™%* if any dynamic behavior has been detected in any of the vertex groups (Section 4.2
and 4.3).

We briefly describe the pipeline of our segmentation scheme as follows. The algorithmic descrip-
tion is also shown in Figure 1.

(D). We first conduct an initial temporal cut to produce a subsequence S by using a bi-directional
boundary search algorithm. (Section 4.1).

@. If none of distinct behaviors can be detected in S, i.e., the boundary frame b = y", the
subsequence S will be directly sent to the compressor (the case (I) in Figure 2). (Section 4.4)
®. Otherwise (i.e., distinct behaviors are detected in S), we perform vertex clustering on S for
spatial segmentation. (Section 4.2)

@. Then, we continue to compute the temporal segmentation of each vertex group (spatial
segment) within next y™%* frames, by observing the dynamic behaviors. (Section 4.3)

(®. Through observing the number of Principle Components (PC), if we have detected distinct
dynamic behaviors of any vertex group before y™%* is reached, the vertex trajectories of each
group, up to the detected boundary frame, are sent to the compressor, separately (Section 4.4).
After the compression, we repeat the process from step 1 (the case (I) in Figure 2).

(©). Otherwise (i.e., we have not detected a temporal segmentation by y™%¥), we also send
the data of each vertex cluster to the compressor, separately (the case (III) in Figure 2). See
Section 4.4. Afterwards, we reuse the previously obtained vertex clustering and continue
observing the temporal segmentation in the remaining mesh frames. That is, we repeat the
process from the step 4 for the remaining mesh frames (The case (IV) in Figure 2).
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Animation Input

N\
© Initial Temporal Cut <
Y
e
N
® Vertex Clustering
@ .
Temporal Segmentation |
N
Y
7| = ymax
N [zl =y v V)
my )
® ®,
N Encoder 4@
Fig. 1. Pipeline overview of our spatio-temporal segmentation scheme for compression. (I, I1, lll, and V)

are the 4 types of the segmented animation blocks, which are illustrated in Figure 2. Note that |7:"¥| and
|z| denote the length of the detected initial temporal cut (see Section 4.1) and temporal segmentation (see
Section 4.3), respectively; y ' and y™%* denote the maximum range for the initial temporal cut and temporal
segmentation, respectively. The numbers in circles correspond to the steps described in Section 3.

4 SPATIO-TEMPORAL SEGMENTATION FOR COMPRESSION

We first describe our spatio-temporal segmentation model that consists of the initial temporal
cut (Section 4.1), vertex clustering (Section 4.2), and temporal segmentation (Section 4.3). Then,
we apply spatio-temporal segmentation results for the compression of 3D mesh animations in
Section 4.4. Finally, we discuss different situations while processing a continuous mesh sequence
as the input in Section 4.5.

4.1 Initial Temporal Cut

Let us denote a mesh animation as ({VJ: }, E), where E represents the connectivities among vertices,

and V{ = (x{, y{, zif) represents the 3D coordinates of the i-th vertex (i = 1,...,V) at the f-th
frame (f = 1,..., F). Here V is the total number of vertices, and F is the number of frames of the
animation sequence.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.
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init
)4

max
)4

| encoder |

Fig. 2. 4 different types of mesh animation blocks sent to the encoder: (I) |7i™| = P (1) |¢iMif| < yinit
and |7]| < y™aX (1) || <y and |7| = y™4% and (1V) direct temporal segmentation based on the
previous vertex grouping results.

Given a mesh sequence, the objective of the initial temporal cut is to determine a boundary frame
V17| so that the dynamic behavior in [V!, V7] is distinctive from that in [VI7""*1, vr"""].
To this end, we can formulate the initial temporal cut as the following optimization problem:

min (V! VOL VO V), M
be[1,ynit]
where b is a varying frame index and I(-, -) computes the affinity between two mesh subsequences.

Available techniques for computing I(,-) can be classified into two categories: 1) front-to-
end uni-direction boundary candidate search, and 2) bi-directional boundary candidate search.
Although the uni-directional search method may have the advantage on efficiency, our bi-directional
search method is more robust in detecting the temporal cut between two successive dynamic
behaviors [4, 16]. Inspired by the kernelized Canonical Correlation Analysis (kCCA) approach
[21, 45], and its successful application to semantic temporal cut for motion capture data [16], we
formulate the initial cut to a Maximum-Mean Discrepancy (MMD) problem as follows:

1 217;1| K(Vbi—>b,«+w’ Vbj—>bj+w)

[T [2 <,
min -1 |1|T | 21T1| Zl-T2| K(Vb,-—>b,»+w,vbj—>bj+w) , (2)
be[Lymit-w] ' 21 |T2| 4 bi—bi+w bi—bj+w
e B Kb, b
where Tj is the subsequence [V, ... ,Vb] and T, is the subsequence [Vb“, . ,V)’m”‘w], wis a
predefined parameter to ensure smooth kernels.
The kernel function in Eq. 2 is defined as follows:
K(Vbi_)bi+w, Vb]-—>bj+w) — exp(_A”Vbi—ﬂJi-#w _ Vbj—>b]-+w”2) (3)

where A is the kernel parameter for K(-) [51]. Due to the symmetric property of the kCCA, i.e.,
K(A,B) = K(B, A), we obtain a symmetric kKCCA matrix for the animation block.

Finally, we can obtain a boundary frame VIT"™1 for the initial cut by solving the objective
function in (Eq. 2). Note that |7/"!| = b + w due to the usage of a smoothing window. Meanwhile,
we denote the detected initial temporal cut as 7™, Figure 3 shows one of the initial cuts for a 3D
mesh animation data, with yi”it =20and w = 5.

The complexity of the above bi-directional search for the initial temporal cut is O(|y*/*|?), which
is less efficient than the uni-directional methods with O(|y'™!!|). However, in our context, we
compute the initial temporal cut within a short mesh sequence [1, y’"*], which is a small cost on
the computation and thus will not cause notable delay to the overall compression framework. The
settings of y'™! for different experimental data are presented in Table 1.
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max

kCCA matrix

min

Q
e
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t\;\( [ 76}-6-{_}7{_}
—

o000

MMD curve

q

b frame index

Fig. 3. An example of the initial temporal segmentation of the ‘March’ data, with the pairwise frame based
kCCA matrix (Eq. 3) in the top panel and the MMN curve (Eq. 2) in the bottom panel. b is the detected
boundary frame.

4.2 Vertex Clustering

In this section, we describe a vertex clustering (spatial segmentation) algorithm based on a two-stage,
bottom-up hierarchical clustering algorithm to obtain optimal spatial affinities within segments.

4.2.1 Initial Vertex Clustering. After the initial temporal cut, /" is obtained; we then compute
the vertex clustering based on the dynamic behaviors of different vertices. The pipeline of our
approach is shown in Figure 4(LILIII).

In this initial vertex clustering step, we first segment a dynamic mesh based on rigidity, which
can be described as follows.

o Compute the Maximal Edge-length Change (MEC) for all edge pairs. Similar to [34, 58], we
compute MEC within |r?"!| frames for each vertex pair, see Figure 4(1).

e Binary labeling of vertices. We fit the MEC of all the edges as an exponential distribution epd,
see the top of Figure 4(I). Then, with the aid of the inverse cumulative distribution function
of epd, we can determine a user-specified percent of the edges as the rigid edges (p = 20%
in our experiments). Thus, the vertices that are connected to the rigid edges are called the
rigid vertices, and the remaining vertices are called the deformed vertices in this work, see
Figure 4(II).

o Identify the rigid regions. Based on the above binary labeling results, we merge the topologi-
cally connected rigid vertices into rigid regions, which become initial rigid vertex clusters.
We also compute the center of each cluster as the average vertex trajectory among all vertices
for each cluster.

o Rigid clusters growing. Starting with the above rigid clusters, we repeatedly merge the con-
nected neighboring deformed vertices into the rigid cluster with the most similar trajectories,
and update the center of the corresponding rigid cluster.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.
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‘deformed’

‘rigid’

(1) (1)

Fig. 4. Pipeline of the vertex clustering within an initial temporal cut of the ‘March’ data: (I) Maximal Edge-
length Change (MEC) for all the edge pairs and their distribution, (II) Binary labeling of vertices, (lll) the
rigid clusters resulted from the initial vertex clustering, and (1V) the rigid cluster grouping results.

The initial vertex clustering is completed till every deformed vertex has been merged into a rigid
cluster 5’ (i = 1,...,k, k is the total number of the clusters), see Figure 4(III).

4.2.2  Rigid Cluster Grouping. In the second-stage vertex clustering, we further classify the rigid
clusters to Ny groups with high internal affinities. In [44], Sattler et al. proposed an iterative
clustered PCA based model for animation sequence compression. Inspired by this work, we design
the second-stage vertex clustering by iteratively classifying and assigning each rigid cluster to the
group with the minimal reconstruction error until the grouping remains unchanged. Since the
iterative clustered-PCA is performed on the initial vertex cluster, it works very efficiently, unlike
the heavy computation to perform on each individual vertex in [44].
The reconstruction error of a rigid cluster &/ can be defined as follows:

16 = 8112 = 118; — (CLj1 + S, (@)

where 3; is the reconstructed cluster by using PCA, C[j] is the center of each group (j = 1,...,N),

and 3; is the reconstruction by using the PCA components (see Eq. 6). Note that we have C[j] in
Eq. 4 because PCA contains the centering (mean subtraction) of the input data for the covariance
matrix calculation.

Figure 4 illustrates the process of the rigid cluster grouping with the ‘March’ data. The full
process of the rigid cluster grouping is also described in Algorithm 1. As an example result in
Figure 4(IV), the relatively less moved rigid clusters, ‘head’, ‘chest’ and ‘right-arm’, are classified
into the same group. Note that we obtain large vertex groups because the input mesh are smooth
on the surface (see Table 1), unlike the motion Capture data containing sparse vertex trajectories
that may lead to small groups. Moreover, the computational cost for the initial vertex clustering
presented in Algorithm 1 is relatively small because both the number of clusters k and the number
of groups N, are small.

4.3 Temporal Segmentation

After obtaining a set of the spatio-temporal segments L(5);(j = 1, ..., Ny) for the initial temporal
cut 7/ we further introduce a temporal segmentation step as follows:

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.
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Algorithm 1 Rigid Cluster Grouping

1: procedure RCGrouping(group number:Ny, clusters: Shi=1,...,k)
2 fori=1— Ny do > group initialization
3 L8] i > initial group label
4 Cli] « & > initial group center
5: end for
6 while L’ # L do
7 L'« L
8 fori=1—kdo > k clusters
9: forj=1— Ny do > Ny groups
10: dljl = ||6% - 5}’:||2 > Eq. 4
11: end for
12: L[§%] = min;d[j] > assign 8' to the closest group
13: end for
14: update the group centers C[i],V i € [1 Ng]
15: end while

16: end procedure

e For each vertex group, we stop observing the number of Principle Components (PC) once
it is changed within the current sliding window. In this way, we can obtain a Num-of-PCs
curve for each vertex group, see the bottom of Figure 5.

o To this end, similar to [26], the temporal segmentation boundary is determined as the first
frame where any Num-of-PCs curve has changes, see the bottom-right of Figure 5.

The full description of the temporal segmentation is presented in Algorithm 2, with the complexity
of O(Nyy™%*), where y™4* is a user-specified parameter denotes the maximal length of temporal
segments. Note that the computational cost of the PCA decomposition increases exponentially with
the input data size. In order to balance the computational cost and the effectiveness of PCA, we set
an adaptive y™%* for each of the input data, see Table 1. The detailed discussion of the involved
parameters y™** and the implementation of the algorithm are described below.

e Maximal length of temporal segments, y™%*. The computational cost of the PCA decomposition
increases exponentially with the input data size. In order to balance between the computational
cost and the effectiveness of PCA, we set an adaptable y™* for each of the input data, see Table 1.

e Parallel computing. The temporal segmentation presented in Algorithm 2 is designed for each
vertex group (spatio-temporal segment), and the vertex groups are independent of each other. Thus,
we can implement the temporal segmentation for each vertex group in parallel. The computational
time statistics in Table 1 show the efficiency improvement through parallelization.

4.4 Compression

After the above spatio-temporal segmentation, we apply PCA to compress each segment with a
pre-defined threshold on the information persistence rate o € [0 1], which is used to determine the
number of PCs to retain after the PCA decomposition, i.e.,

k |n|
Z (m)/Z(m) > o, (5)

where k < n, and {0;}(i = 1,...,n) are the eigen-values of the data block in a decreasing order.
Therefore, we can control the compression quality by manipulating the value of w. Specifically, by
increasing w, we have less information loss but need more storage space after compression, and
vice-versa.
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Fig. 5. Illustration of the temporal segmentation. The top row shows a sampled mesh sequence, with a
bounding box as a sliding window. The size of the window is the length of the initial temporal cut, i.e., |7:"].
The bottom-left shows the vertex grouping of the initial temporal segment, and the bottom-right contains
the change of the number of PCs for each vertex group in the sliding window. y™%* is the maximal possible
delay, and |z| is the detected temporal segmentation boundary.

Algorithm 2 Temporal Segmentation

procedure TempSeg(mesh sequence: V1=V initial cut:7")

2: forj=1— Ny do

PCj_= PCA(V}_)‘T”m |) > #PCs of the j-th vertex group within '™
4: end for
for i = || + 1 — y™9% do
6: forj=1— Ny do
PC; = PCA(V;._”HT”M'_I)
8: if PCj # PCj_ then
break
10: end if
end for
12: end for
b=i > boundary index

14: end procedure

e Encoder. For a vertex group L(5)§, i.e., the j-th vertex group within the i-th temporal segment
7;, we denote its compression as follows:

X %" Al x B, ©6)

where X = V;‘( o for simplicity, A; is the score matrix of dimensions 3|V s):| X kJ’:, BJi. is the
J

coefficient matrix of dimensions k]l: x |z;], and X denotes a centered matrix of X by subtracting the
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mean vectors X, i.e.,
X=X-X (7)
Boundary consistency. As can be seen in Figure 6(II), boundary inconsistencies may occur due to
the independently chosen PCs from the two neighboring vertex groups. In order to alleviate the
potential inconsistency along the boundary, we extend the range of each vertex group with 7-ring
neighbors (7 = 2 in the middle and bottom of Figure 6(I)), and drop the extended 5-ring region after
the PCA decomposition. In this way, the PCA basis of each vertex group inherently encode the
features of its extended neighbors, which can enhance the boundary consistency, see Figure 6(III).

LA AL HGILON

M

Fig. 6. Boundary consistency by overlapping the neighboring vertex groups. (I) Top: an example of segmenta-
tion boundary, Middle and Bottom: merge 2-ring neighbor vertices for each vertex group before sending to
the encoder. (1) and (llI) are the decoded 3D model without/with boundary consistency, respectively.

Bitstream encoding. As the final step of the compression pipeline, we choose the well-known fast
lossless compression method ZLib [12], which combines the Huffman coding [23] and the LZ77
compression [64] that both can be approximated to the limits of information entropy [62]. More
specifically, we first concatenate the PCA components into a bitstream XCp. Then, we apply ZLib
for the encoding, i.e.,

Xps = ZLib(XCpy). (8)

® Decoder. We first apply the inverse of the ZLib method to uncompress for the PCA components,
ie.,

XCps = unZLib(Xps), 9)

where unZLib is the corresponding decoder of the compression method ZLib. Then, with the
uncompressed score matrix and the coefficient matrix, we can approximate each of the spatio-
temporal segment by using the Eq. 6 and Eq. 7. Finally, we restore the original animation by
concatenating the spatio-temporal segments in order.

Note that the complexity of both ZLib and unZLib is O(n), where n is the length of the operated
data [12].
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Fig. 7. The spatio-temporal segmentation results of the experimental data: (1) ‘March’, (2) ‘Cloth’, (3) ‘Horse’,
(4) ‘Jump’, (5) ‘Flag’ and (6) ‘Handstand’. The maximal possible number of the vertex groups Ny = 4 for all
the data. (7)(8) are the segmentation results of ‘Horse’ and ‘Handstand’ data, by using Ren et al’s [43] and
Au et al’s [3] methods, respectively. Note that colors only indicate the intra-segment (not inter-segment)
disparities. See more results in the supplemental materials.

4.5 Sequential Processing

As discussed in Section 3, our spatio-temporal segmentation scheme generates four possible
animation blocks that are further sent to the encoder for compression (see Figure 2), which leads to
four types of the sequential processing to the successive mesh sequence:

(I) |z'"t| = yinit This indicates no distinct behavior has been detected at the initial temporal
cut step (Section 4.1). In this case, the animation block VL, V"™ will be directly sent to the
encoder. Moreover, we need to re-compute a spatio-temporal segmentation for the successive mesh
sequence.
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(I) |z™"i| < yimit and || < y™4%, This indicates the vertex clustering has been conducted
and a temporal segmentation boundary has been detected at V7. In this case, each vertex group
of the animation block will be sent to the encoder, separately. Moreover, we will re-compute a
spatio-temporal segmentation for the successive mesh sequence.

(II) |z'"t| < yi™it and |7| = y™4*. This indicates the vertex clustering has been conducted and a
temporal segmentation boundary has not been detected within the range [V!, VY"1 In this case,
each vertex group of the animation block will be sent to the encoder, separately. Moreover, we will
only need to re-compute the temporal segmentation for the successive mesh sequence.

(IV) Otherwise, we can directly reuse the obtained (previous) vertex grouping results, compute
the temporal segmentation, and then perform the PCA-based compression for each vertex group. If
the new boundary |r| < y™%*, we will need to re-compute a spatio-temporal segmentation for the
successive mesh sequence; otherwise (i.e., |7| = y™%¥), it will again become the case (IV) for the
successive mesh sequence.

5 EXPERIMENT RESULTS AND DISCUSSION

In this section, we first present the experimental data and the used evaluation metrics in Section 5.1.
Then, we describe our experimental results in Section 5.2. In addition, we conducted comparative
studies in Section 5.3. Given our spatio-temporal segmentation based compression scheme shown
in Figure 1, both our approach and the comparative approaches were implemented with Matlab.
All the experiments were performed on the same computer with Intel Core i5-6500 CPU @3.2GHz
(4 cores) with 12G RAM. More results can be found in the supplemental demo video.

5.1 Experimental Setup
Table 1 shows the details of our experimental data. Among them,

e ‘March’, ‘Jump’ and ‘Handstand” were created by Daniel Vlasic at the Computer Graphics
Group at MIT, through driving a 3D template with multi-view video [56].

e ‘Horse’ was generated through deformation transfer by Robert W. Sumner when he was in
MIT [48].

e ‘Flag’ and ‘Cloth’ are dynamic open-edge mesh sequences (Courtesy of Frederic Cordier
from Université de Haute-Alsace) [10].

e ‘Samba’ is a dancing lady animation shared by Ing. Libor V4sa from Department of Computer
Science and Engineering at University of West Bohemia.

We applied the following metrics for quantitative analysis:

Bits per vertex per frame (bpvf). Similar to [8, 47], we also used bpvf to measure the performance
of compression approaches. Note that we assume the vertex coordinates are originally stored as
single-precision floating numbers, i.e., 8bits/Byte X 4Bytes = 32. Thus, after the PCA decomposition
in Section 4.4, we can calculate the quantization of the basis and coeflicients as follows:

Q=32 ) (BIVysyl Xk + kj x || + |z, (10)
LJ
where kj’: denotes the number of the principal dimensions of the j-th vertex group within the i-th

temporal segment. Finally, after the encoding of the PCA decomposition components, we can
estimate the bpvf of our approach as follows:

|th| Q
bpof = : ,
Pof = XCpl VX F

where |XCp| and | Xps| denotes the quantities of the bitstream before and after applying the lossless
compressor ZLib, respectively.

(11)
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Table 1. The results and performances by our model with different configurations of parameters: w and y ‘"
for the Initial Temporal Cut (Section 4.1), y™* for the Temporal Segmentation (Section 4.3) and N for the
vertex clustering (Section 4.2). s and s, are the timings in seconds (unit) of the single-thread and paralleled
implementations, respectively, % denotes the percentage of the time savings for each data, i.e., 100 - (s — sp)/s.
The last column sz shows the decoding timings.

Animations Parameters Rate Distortion(%) Timing

(V/F) w y™t oymax N bpuf STED KGError s Sp % Sd
March 5 15 50 4 2.53 5.83 6.01 75.69 70.08 7.41 0.29
(10002/250) 5 20 50 4 2.44 5.28 5.98 93.72 88.2 5.89 0.26
5 20 100 4 2.44 5.31 5.91 104.79  98.08 6.40 0.26
5 20 50 8 2.38 5.44 6.15 97.15 92.79 449 0.28
Jump 5 15 50 4 4.00 6.22 7.07 63.24 61.39 293 0.17
(10002/150) 5 20 50 4 3.94 9.39 6.58 100.33  98.40 1.92 0.18
5 20 100 4 394 9.39 6.58 101.17  96.95 417 0.19
5 20 50 8 3.94 9.39 6.58 103.45 10092 245 0.18
Handstand 5 15 50 4 2.38 9.00 5.20 51.25 48.02 6.30 0.20
(10002/175) 5 20 50 4 2.31 7.63 5.09 69.29 66.51 3.89 0.18
5 20 100 4 214 8.07 5.22 70.06 66.61 492 0.16
5 20 50 8 2.25 8.05 5.12 71.99 68.92 426 0.18
Horse 3 9 20 4 7.93 4.38 4.88 20.29 19.05 6.11 0.06
(8431/49) 3 12 20 4  6.42 4.61 3.72 17.00 16.21 4.65 0.05
3 12 30 4 6.42 4.61 3.72 17.09 16.07 597 0.05
3 12 20 8 7.31 4.52 4.21 22.43 21.55 3.92  0.06
Flag 10 30 100 4 0.87 2.28 7.89 120.48 104.95 12.89 0.62
(2750/1001) 10 40 100 4 0.79 2.63 7.89 195.13 178.64 845 0.61
10 40 150 4 0.73 2.71 7.94 210.52 19256 853 0.61
10 40 100 8 0.79 2.67 7.87 198.25 180.23 9.09  0.69
Cloth 10 30 100 4 054 089 3.01 14.49 13.19 8.97 0.03
(2750/200) 10 40 100 4 0.63 0.84 1.95 31.64 29.13 7.93 0.03
10 40 150 4 0.63 0.86 1.97 33.98 28.20 17.01 0.04
10 40 100 8 0.63 0.90 1.94 32.40 28.95 1047 0.03
Samba 5 15 50 4 1.40 0.04 4.87 16.57 21.42 2934 0.13
(9971/175) 5 20 50 4 1.62 0.09 6.16 56.59 63.88 12.87 0.11
5 20 100 4 1.43 0.09 6.17 53.97 73.50 36.19 0.11
5 20 50 8 1.62 0.09 6.16 66.42 68.92 3.76 0.11

Reconstruction errors. After compression, we can reconstruct the animation with the decoder
described in Section 4.4. In order to measure the difference between the reconstructed animation
and the original animation, we use two well-known metrics, namely, the Spatiotemporal edge
difference (STED) error proposed by Vasa et al. [55] and the KGError proposed by Karni et al. [26].
The STED error can be defined as the weighted spatial and temporal errors as follows [55]:

STED =+/STED(d_)? + ¢? - STED(w_, dt_)?, (12)

where d_ denotes the local spatial range, c_ is a weighting parameter, w_ is the local temporal
range and dt_ is the temporal distance value. We apply the default parameter settings based on the
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studies by Vasa et al. in [55]. Moreover, the KGError can be defined as follows [26]:

IF - Fl|
KGError = 100 - ————, (13)
IF - EF)ll
where || - || denotes the Frobenius norm, F and F are the original animation coordinates and the

reconstructed animation coordinates (3V X F), respectively. Furthermore, E(F) denotes the averaged
centers of all the frames, and thus F — E(F) denotes the center-subtracted animation.

5.2 Experimental Results

In this part, we present and discuss both the segmentation results and the compression results by
our approach.

Spatio-temporal segmentation results. Figure 7 shows some samples of the spatio-temporal
segmentation results of our experimental data (more results can be found in our supplemental
materials). As can be seen in this figure, given the maximal number of spatial segments (groups)
Ny = 4, our approach is able to automatically determine the optimal number of vertex groups (i.e.,
exploiting the spatial redundancy) for different dynamic behaviors (i.e., exploiting the temporal
redundancy) for all the data. For example:

o The segmentation results of the ‘March’, the ‘Jump’, and the ‘Handstand’ data are represen-
tatives of the local dynamic behaviors of different mesh regions. As can be clearly seen in
Figure 7(6), our segmentation approach can not only determine the number of segments auto-
matically, but also divide the mesh based on the local movements and group the disconnected
regions with similar behaviors.

e The ‘Cloth’ animation in Figure 7(2) is firstly segmented into 4 different highly deformed
regions while dropping onto the table. Then, our approach generates 3 segments, i.e., 2
waving corner regions with deformed wrinkles and 1 relatively static large region.

e From the segmentation results of the ‘Horse’ animation in Figure 7(3), we can observe the 4
legs are classified into the same group when moving towards the same direction; otherwise,
they form different spatial groups. Similarly, the ‘tail’ is grouped with the ‘trunk’ region if
the absence of distinct movements, or it is divided into two groups if bended.

Parallel computing. As described in Section 4.3, the temporal segmentation is applied on
each vertex group independently, which can be accelerated through parallel computing. In our
experiments, we implemented the temporal segmentation step with parallel computing on 4 cells.
The computational time is shown in the column ‘s,’ in Table 1. Compared to the single thread
implementation (column ‘s’ in Table 1), the average efficiency has been improved by 9.94%, while it
can be improved even up to 17.01% for the ‘Cloth’ data. It is noteworthy that the decompression
time ‘sy’ is less than 0.3s for all the experimental data. This is important for those applications that
require a fast decompression such as bandwidth-limited animation rendering and display.

Compression results. Table 1 shows the different configurations of our spatio-temporal seg-
mentation model for the compression of the experimental data (w = 0.99). For each of the data with
different parameters, we highlight the best ‘Rate’, ‘STED’ ‘KGError’, and ‘Timing’ in bold fonts. We
present and discuss the compression results in reference to the following different parameters:

o w. This parameter is a smoothing parameter for the initial temporal cut (Section 4.1). This
parameter can be empirically chosen based on the target frame rate and the mesh complexity.

e yi"i’ If we increase y"* for the initial temporal cut, the computing time may be significantly
increased since the time complexity of the initial temporal cut (Section 4.1) is O(|y™!|?). On
the other hand, its influence on the distortion is limited. Moreover, bpv f tends to decrease
for most of the experimental data (except the ‘Cloth’ data).
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e y™%* As can be seen in Table 1, the change of y™%* does not significantly affect any of
bpuf, distortion, and the computing time. This is because most of the temporal segmentation
boundaries are found before reaching y™%*. Note that y™%* is used in our compression
scheme to simulate a block-by-block progressive compression. That is, in the case that a
Temporal Segmentation (Section 4.3) boundary cannot be found in a long sequence, we send
the scanned data for compression to avoid the compressor being idle for too long time (case
(1) in Figure 2).

e N,. By increasing N, from 4 to 8, we do not observe the significant changes of the evaluation
metrics. This is because our 2-stage vertex clustering can automatically converge to the
optimal number of vertex groups. Moreover, the multi-thread implementation of our approach
significantly improves the computational efficiency (see the ‘Timing’ column in Table 1).
Therefore, in general N, tends to be set to a small number. In fact, based on the previous
studies [26, 36], Ny cannot be a big number because the bit rate will increase sharply due
to the additional groups’ basis. In our experiments, we empirically set N, = 4 because our
experimental computer has a CPU of 4 cores.

5.3 Comparative Studies

In this section, we first adapt the existing compression methods for the temporal block-wise
compression and compare with our adaptive spatio-temporal segmentation based compression
method in Section 5.3.1. We show the improvements of our method by comparing to the previous
method presented in [37]. Then, in Section 5.3.2, we further demonstrate the effectiveness of our
method by comparing to the recent advanced dynamic mesh compression methods based on the
measurement metric STED [55]. Although the method in [53] also compresses an animation both
spatially and temporally by using a Laplacian-based spatio-temporal predictor, they require the
animation to be given in advance to compute an averaged pose.

5.3.1 Comparisons with the adapted methods. We compared our method with Sattler et al’s method
in [44], which is a non-sequential processing compression method. Additionally, we adopted the
idea in [30] which cuts an animation into temporal blocks of the same size. Then, we can simulate
the sequential processing of the existing compression methods, including Karni et al’s method
in [26] and the PCA-based methods, to compress each block in order. We call the adapted approaches
as the ‘Adapted Soft’ and the ‘Adapted PCA’. In order to make fair comparisons, the block size of
the adapted methods is approximately set to the average of |z| for each of the experimental data.
Note that we have not included an ‘Adapted Simple’ method, which can be obtained by similarly
adapting Sattler et al’s method, into the comparison due to the extremely high computational cost
of Sattler et al’s method [44], which is unsuitable for sequential processing. More importantly, with
the additional step on the lossless compression of the PCA bases and coeflicients in Section 4.4,
our method (red solid line in Figure 8) has been significantly improved, compared to our previous
method in [37] (red dotted line in Figure 8).

Rate-Distortion curves (KG Error versus bpvf). Figure 8 shows the comparisons of an ex-
ample between our method and the other methods. As can be seen with the KGError in the left of
Figure 8, our method shows a significantly better performance than the adapted methods. That is,
with the same bpuf in the range of [2, 6.5], our method can always reconstruct the ‘Cloth’ anima-
tion with a much smaller KG Error. Note that Karni et al’s method has a better performance when
bpuf < 2. This is because the ‘Cloth’ data contains a large portion of nearly static poses, which
means the animation has significant temporal redundancies. Thus, the non-sequential precessing
method by Karni et al. takes this advantage by treating the entire animation. However, our method
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Fig. 8. Left shows the KGError comparisons on the ‘Cloth’ animation between our model and the previous
model in I3D’19 [37] with the same specifications (N; = 4, yimit = 40,y™% = 100), and the ‘Adapted
Soft’ (block size = 100), the ‘Adapted PCA’ (block size = 100), Karni et al’s method [26] and Sattler et al’s
method [44]. Right shows the STED error comparisons on the ‘Cloth’ animation between our method
(Ng =4, yimit = 40, y™9% = 80) and the existing methods with the block size of 80.

runs much more efficiently: on average, 14.5 seconds consumed by our method, 32.5 seconds con-
sumed by Karni et al’s method, and 4421.9 seconds consumed by Sattler et al’s method. Moreover,
our method also provides a fine option for users who prefer high qualities after compression with
slightly more storage cost, e.g., bpvf > 2.

5.3.2  Comparisons with the recent advanced methods. We also compared our method with several
state-of-the-art animation compression methods, including the temporal block-wise method by
Lalo et al. [30], the trajectory-prediction based methods by Vasa et al. [53, 54], and the linear
prediction based method by Karni et al. [26]. For the purpose of a fair comparison, we adapted
the trajectory-prediction based method and the linear prediction based method to the block-wise
compression with the block size of y™%*. The comparative results are described as follows.

Rate-Distortion curves (STED versus bpvf). The right of Figure 8 show the distortion com-
parisons of an example between our method and the other methods, summarized below.

e Compared to the block-wise method [30], our adaptive block-wise model shows better
performances in the right of Figures 8. This is because our approach can automatically
compute the adaptive block size and the number of vertex groups by exploiting both the
temporal and the spatial redundancies.

e Compared to the trajectory-prediction based methods in [53, 54], our approach shows a
better performance in the right of Figure 8. This is because our compression model utilizes
the adaptive spatio-temporal segmentation, which automatically preserves the STED within
the spatio-temporal segments.

e Regarding the computational time, our approach took 46 seconds, while the trajectory-
prediction based methods in [53, 54] took several minutes. Note that we have not included the
time comparison with the method in [26] and [44], because they took hours of computation
and returned higher reconstruction errors.

Reconstruction errors. Figure 9 shows the heat-map visualizations of the reconstruction errors
using our approach and the other methods. Note that the heat-map is colored based on the per-
vertex Euclidean distances. Overall, using our compression model, we can obtain lower distortions
with a smaller bpvf. We describe the comparative results in details as follows:
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4 o Comparisons with the temporal block-wise method. From the comparison between our method
> and the temporal block-wise method [30], the heat-map shows much lower per-vertex
6 distortions on the fast-moving regions, e.g., swing hands of the ‘March’ data and the stretching
7 legs/tails of the ‘Horse’ data. This is because our model exploits the spatial redundancy with
8 a spatial segmentation within each temporal block, while the temporal block-wise method
2 directly compresses the entire block.

10 e Comparisons with the linear prediction based methods. The linear prediction method in [26]
N first decomposes the animation data with PCA, and then achieves compression by applying
12 the linear prediction analysis to the decomposed components. Compared to [30], [26] can
13 avoid high distortions on the fast-moving regions. However, this method can cause distortions
14 in the relatively rigid regions due to the information loss by the linear predictors.

15 o Comparisons with the trajectory-prediction based methods. As can be seen from the ‘Cloth’
16 data in the right of Figure 9, the vertex distortions even occur on the rigid table-top surface
17 of the mesh using the trajectory-prediction based compression methods [53, 54], as they do
18 not explicitly constrain the spatial affinities, i.e., the spatial segmentation.

19 o Our method. Based on the above findings, our method avoids local extreme reconstruction
20 errors using the specially-designed spatio-temporal segmentation to exploit both the spatial
21 and the temporal redundancies. This advantage becomes more significant when periodically
22 dynamic behaviors either spatially or temporally occur in the animation. In addition, our
23 method runs much more efficiently, compared to the trajectory-prediction based compression
24 methods [53, 54].

25
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44 Fig. 9. The reconstruction errors of the compression by using our approach, Lalo et al’s method in [30], Karni
45 et al’s methods in [26], Vasa et al’s method in [54] and in [53]. The colorbar indicates the reconstruction
46 errors from low (blue) to high (red).

47

48

49 5.3.3  More comparisons with the spatial segmentation based methods. While there exist relatively
50 few 3D mesh animation compression methods in the literature, we further adapt the well-known
51 advanced spatial segmentation methods for comparative studies, including the skeleton extraction
52
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based [3] and the hierarchical region-growing segmentation method [43]. Note that we did not
choose to compare our method with the recent learning based segmentation methods, because:

e On the one hand, we have a limited amount of 3D mesh animation data, which may be
insufficient to well train learning based methods;

e On the other hand, many of the learning based methods require manual labelling and comput-
ing the correspondences among the training meshes, which requires extra human operations
that may not lead to ideal segmentation results due to human interventions.

Segmentation results. Figure 7-(7) and Figure 7-(8) show the spatial segmentation results for
‘Horse’ and ‘Handstand’ by using the two spatial segmentation methods, respectively. As shown in
our spatio-temporal segmentation results for ‘Horse’ in Figure 7-(3) and ‘Handstand’ in Figure 7-
(6), our approach does not have strict requirements on segmentation boundary shapes and we
obtain different segmentation results based on motions. This is because our approach groups the
vertices with large affinities to achieve high compression rates, unlike most of the existing 3D mesh
segmentation methods that aim to obtain smooth and finely shaped boundaries for functional or
semantic parts.

Compression performance. In order to adapt the spatial segmentation methods in [3] and [43]
for the compression of 3D mesh animation, we process the spatial segments separately with our
compression technique presented in Section 4.4. Figure 10 shows the Rate-Distortion curves of our
approach and the comparative methods by experimenting on different data. As can be seen from
the figure, our compression approach is robust and outperforms most of the compared methods.

e With the ‘Horse’ data, our compression approach mostly outperforms the comparative
methods. Although Vasa et al’s method in [54] returns less KGError with bpvf < 4, our
compression approach returns much less STED error.

For the ‘Handstand’ data, our approach shows better performance than the comparative

methods [3, 43, 54], especially when bpv f > 1.8. By comparing to Vasa et al.s method in [53],

our approach shows less errors when bpv f > 2.6.

e For the ‘Samba’ data, our approach overtakes all the comparative methods by measuring
with the STED error. With the KGError metric, our approach shows competitive performance
against the methods in [3, 43, 54] when bpvf > 3 and outperforms the method [53] when
bpvf > 4.3.

Therefore, based on the above experimental results on various of data, we can observe that

e our spatio-temporal segmentation based compression approach shows more robust per-
formance, given our approach returns both less KGError and STED errors on most of the
data;

e our approach outperforms the comparative methods when bpv f becomes large. This means
when a user prefers decoded precision rather than the quantization, our compression approach
is the best choice among the comparative methods.

5.4 Limitations

The main limitation of our current model is the configuration of the parameters needed for the
spatio-temporal segmentation scheme. To investigate this issue, we have conducted experimental
analysis on the parameters in Section 5.2. Based on our analysis, the tuning of the parameters only
has limited influence on the compression results. Using the ‘Horse’ data in Table 1 as an example,
the compression does not change when we modify y™%* from 20 to 30. This is because our method
often detects a temporal segmentation boundary before reaching y™%*, case (II) of Figure 2 in
Section 4.5.
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47 Another limitation of our model is the computational cost. Although we have implemented some
48 parts of our spatio-temporal segmentation model through parallel computing and its computational
49 time is superior to those of the existing non-sequential processing based compression methods, it
50 requires further design for a frame-by-frame segmentation update scheme towards the real-time
51 compression of 3D mesh animations in the future.
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6 CONCLUSION

In this paper, we have presented a new 3D mesh animation compression model based on spatio-
temporal segmentation. Our segmentation scheme utilizes the process of an initial temporal cut,
two-stage vertex clustering, and temporal segmentation, which are greedy processes to exploit
the temporal and spatial redundancies. As discussed in the experimental results, with the user-
specified parameters of the corresponding 3D mesh animation data, our compression scheme
can automatic determine the optimal number of temporal segments and the optimal number of
vertex groups based on global motions and the local movements of input 3D mesh animations.
That is, our segmentation methods can automatically optimize the temporal redundancies and the
spatial redundancy for compression. Our experiments on various animations demonstrated the
effectiveness of our compression scheme. In the future, we would like to extend our spatio-temporal
segmentation scheme to handle various motion representations, which can be potentially used for
various motion-based animation searching, motion editing, and so on.

ACKNOWLEDGEMENTS
This work has been in part supported by the National Natural Science Fundation of China (No.61962021,

61602222, 61732015, 61762050), the Natural Science Foundation of Jiangxi Province (No.20171BAB212011),

the Key Research and the Development Program of Jiangxi Province (No0.20192BBE50079), the Key
Research and the Development Program of Zhejiang Province (N0.2018C01090). Zhigang Deng is
in part supported by US NSF IIS-1524782.

REFERENCES

[1] Andreas A Vasilakis and Ioannis Fudos. 2014. Pose partitioning for multi-resolution segmentation of arbitrary mesh
animations. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 293-302.

[2] Marc Alexa and Wolfgang Miiller. 2000. Representing Animations by Principal Components. Computer Graphics Forum
19, 3 (2000), 411-418.

[3] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee Lee. 2008. Skeleton extraction
by mesh contraction. In ACM Transactions on Graphics (TOG), Vol. 27. 44.

[4] Jernej Barbic, Alla Safonova, Jiayu Pan, Christos Faloutsos, Jessica K Hodgins, and Nancy S Pollard. 2004. Segmenting
motion capture data into distinct behaviors. (2004), 185-194.

[5] Philippe Beaudoin, Pierre Poulin, and Michiel van de Panne. 2007. Adapting wavelet compression to human motion
capture clips. In Proceedings of Graphics Interface 2007 on. 313-318.

[6] Siddhartha Chattopadhyay, Suchendra M. Bhandarkar, and Kang Li. 2007. Human Motion Capture Data Compression
by Model-Based Indexing: A Power Aware Approach. IEEE Transactions on Visualization and Computer Graphics 13, 1
(2007), 5-14.

[7] Chengju Chen, Qing Xia, Shuai Li, Hong Qin, and Aimin Hao. 2018. High-fidelity Compression of Dynamic Meshes
with Fine Details using Piece-wise Manifold Harmonic Bases. In Proceedings of Computer Graphics International 2018
on. 23-32.

[8] Jiong Chen, Yicun Zheng, Ying Song, Hangiu Sun, Hujun Bao, and Jin Huang. 2017. Cloth compression using local
cylindrical coordinates. Visual Computer 33, 6-8 (2017), 801-810.

[9] Xiaobai Chen, Aleksey Golovinskiy, and Thomas A. Funkhouser. 2009. A benchmark for 3D mesh segmentation. In
ACM Transactions on Graphics (TOG), Vol. 28. 73.

[10] Frederic Cordier and Nadia Magnenatthalmann. 2005. A Data-Driven Approach for Real-Time Clothes SimulationaAa.
Computer Graphics Forum 24, 2 (2005), 173-183.

[11] Edilson de Aguiar, Christian Theobalt, Sebastian Thrun, and Hans-Peter Seidel. 2008. Automatic Conversion of Mesh
Animations into Skeleton-based Animations. Computer Graphics Forum 27, 2 (2008), 389-397.

[12] Peter Deutsch and Jean-Loup Gailly. 1996. ZLIB Compressed Data Format Specification version 3.3. RFC 1950 (1996),
1-11.

[13] Amirhossein Firouzmanesh, Irene Cheng, and Anup Basu. 2011. Perceptually Guided Fast Compression of 3-D Motion
Capture Data. IEEE Transactions on Multimedia 13, 4 (2011), 829-834.

[14] David George, Xianghua Xie, Yu-Kun Lai, and Gary K. L. Tam. 2018. A Deep Learning Driven Active Framework for
Segmentation of Large 3D Shape Collections. arXiv preprint arXiv:1807.06551 (2018).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.



Page 23 of 71

oNOYTULT D WN =

Transactions on Multimedia Computing, Communications, and Applications

Spatio-temporal Segmentation based Adaptive Compression of Dynamic Mesh Sequences000:23

[15]

[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]
[39]

[40]

David George, Xianghua Xie, and Gary K. L. Tam. 2018. 3D mesh segmentation via multi-branch 1D convolutional
neural networks. Graphical Models graphical Models and Image Processing computer Vision, Graphics, and Image
Processing 96 (2018), 1-10.

Dian Gong, Gérard Medioni, Sikai Zhu, and Xuemei Zhao. 2012. Kernelized temporal cut for online temporal
segmentation and recognition. In European Conference on Computer Vision. Springer, 229-243.

Qin Gu, Jingliang Peng, and Zhigang Deng. 2009. Compression of Human Motion Capture Data Using Motion Pattern
Indexing. Computer Graphics Forum 28, 1 (2009), 1-12.

Igor Guskov and Andrei Khodakovsky. 2004. Wavelet compression of parametrically coherent mesh sequences. Euro-
graphics Association. 183-192 pages.

Mohammadali Hajizadeh and Hossein Ebrahimnezhad. 2016. Predictive compression of animated 3D models by
optimized weighted blending of key-frames. Computer Animation and Virtual Worlds 27, 6 (2016), 556—576.

Toshiki Hijiri, Kazuhiro Nishitani, Tim Cornish, Toshiya Naka, and Shigeo Asahara. 2000. A spatial hierarchical
compression method for 3D streaming animation. In Symposium on Virtual Reality Modeling Language. 95-101.
Thomas Hofmann, Bernhard Scholkopf, and Alexander J Smola. 2008. Kernel methods in machine learning. Annals of
Statistics 36, 3 (2008), 1171-1220.

Junhui Hou, Lap Pui Chau, Nadia Magnenat-Thalmann, and Ying He. 2017. Sparse Low-Rank Matrix Approximation
for Data Compression. IEEE Transactions on Circuits & Systems for Video Technology 27, 5 (2017), 1043-1054.

David A. Huffman. 1952. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40, 9
(1952), 1098-1101.

Doug L. James and Christopher D. Twigg. 2005. Skinning mesh animations. international conference on computer
graphics and interactive techniques 24, 3 (2005), 399-407.

Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh segmentation and labeling.
international conference on computer graphics and interactive techniques 29, 4 (2010), 102.

Zachi Karni and Craig Gotsman. 2004. Compression of soft-body animation sequences. Computers & Graphics 28, 1
(2004), 25-34.

Ladislav Kavan, Peter-Pike J. Sloan, and Carol O’Sullivan. 2010. Fast and Efficient Skinning of Animated Meshes.
Computer Graphics Forum 29, 2 (2010), 327-336.

Murtaza Ali Khan. 2016. An efficient algorithm for compression of motion capture signal using multidimensional
quadratic Bézier curve break-and-fit method. Multidimensional Systems and Signal Processing 27, 1 (2016), 121-143.
Choong-Hoon Kwak and Ivan V. Bajic. 2011. Hybrid low-delay compression of motion capture data. In 2011 IEEE
International Conference on Multimedia and Expo. 1-6.

Aris S. Lalos, Andreas A. Vasilakis, Anastasios Dimas, and Konstantinos Moustakas. 2017. Adaptive compression of
animated meshes by exploiting orthogonal iterations. Visual Computer International Journal of Computer Graphics 33,
6-8 (2017), 1-11.

Binh Huy Le and Zhigang Deng. 2014. Robust and accurate skeletal rigging from mesh sequences. Acm Transactions
on Graphics 33, 4 (2014), 1-10.

Pai-Feng Lee, Chi-Kang Kao, Juin-Ling Tseng, Bin-Shyan Jong, and Tsong-Wuu Lin. 2007. 3D animation compression
using affine transformation matrix and principal component analysis. IEICE TRANSACTIONS on Information and
Systems 90, 7 (2007), 1073-1084.

Tong-Yee Lee, Yu-Shuen Wang, and Tai-Guang Chen. 2006. Segmenting a deforming mesh into near-rigid components.
The Visual Computer 22, 9 (24 Aug 2006), 729. https://doi.org/10.1007/s00371-006-0059-6

Tong Yee Lee, Yu Shuen Wang, and Tai Guang Chen. 2006. Segmenting a deforming mesh into near-rigid components.
Visual Computer 22, 9-11 (2006), 729.

Xin Liu, Zaiwen Wen, and Yin Zhang. 2012. Limited Memory Block Krylov Subspace Optimization for Computing
Dominant Singular Value Decompositions. Siam Journal on Scientific Computing 35, 3 (2012), A1641-A1668.
Guoliang Luo, Frederic Cordier, and Hyewon Seo. 2013. Compression of 3D mesh sequences by temporal segmentation.
Computer Animation & Virtual Worlds 24, 3-4 (2013), 365-375.

Guoliang Luo, Zhigang Deng, Xiaogang Jin, Xin Zhao, Wei Zeng, Wengiang Xie, and Hyewon Seo. 2019. 3D Mesh
Animation Compression based on Adaptive Spatio-temporal Segmentation. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. 10.

Guoliang Luo, Gang Lei, Yuanlong Cao, Qinghua Liu, and Hyewon Seo. 2017. Joint entropy-based motion segmentation
for 3D animations. The Visual Computer 33, 10 (2017), 1279-1289.

Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3D Mesh Compression: Survey, Compar-
isons, and Emerging Trends. Comput. Surveys 47, 3 (2015), 44.

K. Mamou, T. Zaharia, F. Preteux, N. Stefanoski, and J. Ostermann. 2008. Frame-based compression of animated meshes
in MPEG-4. In IEEE International Conference on Multimedia and Expo. 1121-1124.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.


https://doi.org/10.1007/s00371-006-0059-6

oNOYTULT D WN =

Transactions on Multimedia Computing, Communications, and Applications Page 24 of 71

000:24 Luo et al.

[41] Frédéric Payan and Marc Antonini. 2007. Temporal wavelet-based compression for 3D animated models. Computers &
Graphics 31, 1 (2007), 77-88.

[42] Subramanian Ramanathan, Ashraf A. Kassim, and Tiow Seng Tan. 2008. Impact of vertex clustering on registration-

based 3D dynamic mesh coding. Image & Vision Computing 26, 7 (2008), 1012-1026.

Zhile Ren and Gregory Shakhnarovich. 2013. Image Segmentation by Cascaded Region Agglomeration. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition. 2011-2018.

Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Simple and efficient compression of animation sequences. In

ACM Siggraph/eurographics Symposium on Computer Animation. 209-217.

[45] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schélkopf. 2007. A Hilbert space embedding for distributions. In

In Algorithmic Learning Theory: 18th International Conference. Springer-Verlag, 13-31.

Nikolce Stefanoski, Xiaoliang Liu, Patrick Klie, and Jorn Ostermann. 2007. Scalable Linear Predictive Coding of

Time-Consistent 3D Mesh Sequences. In 3dtv Conference. 1-4.

Nikol¢e Stefanoski and Jorn Ostermann. 2010. SPC: fast and efficient scalable predictive coding of animated meshes. In

Computer Graphics Forum, Vol. 29. Wiley Online Library, 101-116.

[48] Robert W Sumner and Jovan Popovic. 2004. Deformation transfer for triangle meshes. international conference on
computer graphics and interactive techniques 23, 3 (2004), 399-405.

[49] Art Tevs, Alexander Berner, Michael Wand, Ivo Thrke, Martin Bokeloh, Jens Kerber, and Hans-Peter Seidel. 2012.
Animation Cartography&Mdash;Intrinsic Reconstruction of Shape and Motion. ACM Trans. Graph. 31, 2, Article 12
(April 2012), 15 pages. https://doi.org/10.1145/2159516.2159517

[50] Shoichi Tsuchie, Tikara Hosino, and Masatake Higashi. 2014. High-quality vertex clustering for surface mesh
segmentation using Student-t mixture model. Computer-aided Design 46 (2014), 69-78.

[51] Steven Van Vaerenbergh. 2010. Kernel methods for nonlinear identification, equalization and separation of signals. Ph.D.
Dissertation. University of Cantabria. Software available at https://github.com/steven2358/kmbox.

[52] Libor Vasa and Guido Brunnett. 2013. Exploiting Connectivity to Improve the Tangential Part of Geometry Prediction.

IEEE Transactions on Visualization and Computer Graphics 19, 9 (2013), 1467-1475.

Libor Vasa, Stefano Marras, Kai Hormann, and Guido Brunnett. 2014. Compressing dynamic meshes with geometric

laplacians. Computer Graphics Forum 33, 2 (2014), 145-154.

[54] Libor Vasa and Vaclav Skala. 2009. COBRA: Compression of the Basis for PCA Represented Animations. Computer
Graphics Forum 28, 6 (2009), 1529-1540.

[55] Libor Vasa and Vaclav Skala. 2011. A Perception Correlated Comparison Method for Dynamic Meshes. IEEE Transactions
on Visualization & Computer Graphics 17, 2 (2011), 220-30.

[56] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popovic. 2008. Articulated mesh animation from multi-view
silhouettes. international conference on computer graphics and interactive techniques 27, 3 (2008), 97.

[57] Pengjie Wang, Zhigeng Pan, Mingmin Zhang, Rynson W.H. Lau, and Haiyu Song. 2013. The alpha parallelogram

predictor: A lossless compression method for motion capture data. Information Sciences 232 (2013), 1-10.

Stefanie Wuhrer and Alan Brunton. 2010. Segmenting animated objects into near-rigid components. Visual Computer

26, 2 (2010), 147-155.

[59] Bailin Yang, Zhaoyi Jiang, Jiantao Shangguan, Frederick W.B. Li, Chao Song, Yibo Guo, and Mingliang Xu. 2018.
Compressed dynamic mesh sequence for progressive streaming: Compressed Dynamic Mesh Sequence Progressive
Streaming. Computer Animation and Virtual Worlds (2018).

[60] Bailin Yang, Luhong Zhang, W.B. Frederick Li, Xiaoheng Jiang, Zhigang Deng, Meng Wang, and Mingliang Xu. 2018.
Motion-aware Compression and Transmission of Mesh Animation Sequences. ACM Transactions on Intelligent Systems
and Technologies (2018), (accepted in December 2018).

[61] Jeong Hyu Yang, Chang Su Kim, and Sang Uk Lee. 2002. Compression of 3-D triangle mesh sequences based on
vertex-wise motion vector prediction. IEEE Transactions on Circuits & Systems for Video Technology 12, 12 (2002),
1178-1184.

[62] Yazhou Yuan, Yu Zhang, Zhixin Liu, and Xinping Guan. 2017. Lossless coding scheme for data acquisition under
limited communication bandwidth. Digital Signal Processing 69 (2017), 204-211.

[63] Mingyang Zhu, Huaijiang Sun, and Zhigang Deng. 2012. Quaternion space sparse decomposition for motion com-
pression and retrieval. In Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on Computer Animation.
Eurographics Association, 183-192.

[64] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory 23, 3 (1977), 337-343.

[43

—

[44

—

[46

—

[47

—

[53

—

[58

—

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 000. Publication date: 0000.


https://doi.org/10.1145/2159516.2159517
https://github.com/steven2358/kmbox

Page 25 of 71 Transactions on Multimedia Computing, Communications, and Applications

1

2

i Date: 2019-10-13

Z Dear honored editors of the TOMM journal,

7

8

9 . . . . " H

10 We are grateful for the opportunity to resubmit our revised article “Spatio-temporal
11 Segmentation based Adaptive Compression of Dynamic Mesh Sequences” to the ACM
12 Transactions on Multimedia Computing Communications and Applications Journal. The
1 N . . . .

12 objective of this paper is to study a new spatio-temporal segmentation-based approach for
15 the adaptive compression of the dynamic mesh sequences. We also greatly appreciate the
16 insightful comments from reviewers, which are very helpful to improve the quality of our
1; submission. Compared to the initial version, our revised manuscript has been improved in
19 the following aspects:

20

21 ® Since there exist few 3D animation compression methods, we have adapted the
22 skeleton extraction based [3] and the hierarchical regional growing segmentation [43]
;i methods for 3D mesh compression, with which the comparison results have further
25 shown the advantage of our method. See the detailed descriptions in Section 5.4.

26

27 ® To further extend the variety of our experimental data, we have added another human
28 dancing animation ‘Samba’ in the comparative study.

29

30 ® Thanks to the reviewers’ helpful suggestions, we believe our presentation has been
g; significantly improved in the revised manuscript. For example, we have revised our
33 symbols and have added a symbol list for Section 3; we have also provided further
34 discussion on the parameters used in our compression scheme.

35

36 In what follows, we provide detailed responses to reviewers of our previous submission,
;73 along with the corresponding revisions.

39

40

41 .

42 Thank you for your time and efforts.

43

44

45

46 Sincerely yours,

47

48 Guoliang LUO

49

50

51 Associate Professor, Ph.D.

g ; East China Jiaotong University

54 luoguoliang @ecjtu.edu.cn

55

56

57

58

59

60

Page 1 of 14



oNOYTULT D WN =

Transactions on Multimedia Computing, Communications, and Applications

Referee: 1
Comments:
This paper proposed Spatio-Temporal Segmentation approach based on adaptive Compression.
The study result is solid and superior. The comparison result show that the proposed method s
superior than existing the-state-of-the-arts methods. More concretely, the spatio vertex cluster
and Temporal segmentation are done relied heavily on examining the relevant thresholds. The
paper is well-writing and the whole structure is preferring, the authors' work is very interesting
and strong practicability. The extensive experiments are completed to validate the feasible of
proposed method. Additionally, the various comparative result also further proves the good
performance of proposed method. Nonetheless, there still exist some problems need to further
clearly clarify, they can be summarized as follows.
1.In fact, in the segmentation and compression studies, because they are traditional and
classical problems in computer graphics, there are lots of results and many different methods.
Obviously, in the review section, many important studies are ignored by the authors, some
milestone studies are not reviewed by the authors at all. Such as,
A George D, Xie X, Lai Y K, et al. A Deep Learning Driven Active Framework for Segmentation
of Large 3D Shape Collections[J]. 2018.
A Tsuchie S, Hosino T, Higashi M, et al. High-quality vertex clustering for surface mesh
segmentation using Student-t mixture model[J]. Computer-aided Design, 2014: 69-78.
A Chen X, Golovinskiy A, Funkhouser T A, et al. A benchmark for 3D mesh segmentation[J].
international conference on computer graphics and interactive techniques, 2009, 28(3).
A George D, Xie X, Tam G K, et al. 3D mesh segmentation via multi-branch 1D convolutional
neural networks[J]. Graphical Models \/graphical Models and Image Processing \/computer
Vision, Graphics, and Image Processing, 2018: 1-10.
A Maglo A, Lavoue G, Dupont F, et al. 3D Mesh Compression: Survey, Comparisons, and
Emerging Trends[J]. ACM Computing Surveys, 2015, 47(3).
----> Response: We have added an extra paragraph (The 3™ paragraph in Section 2-Related
Works) to review the state-of-the-art research works on 3D mesh segmentation. However, it is
worthy to mention that we focus on the compression and thus do not have strict
requirements on segmentation boundary shapes, unlike most of the existing 3D mesh
segmentation methods that aim to obtain smooth and finely shaped boundaries for
functional or semantic parts.

2.In segmentation and compression area, there are many different studies, in this manuscript,
the comparison methods are relatively obsolete, the authors should conduct the comparison
with the latest methods, so as to emphasize the superiority of presented method. Above all, the
comparison between proposed method and these methods based on learning methods should be
completed. Recently, the methods based on learning often obtain excellent results no matter
what is in dynamic mesh or in 3D shape.

----> Response: In the revised manuscript, we have adapted the skeleton extraction based [3]
and the hierarchical regional growing segmentation [43] methods for the mesh compression,
with which the comparison results have further shown the advantage of our method. See the
detailed descriptions in Section 5.4.

Note that we have not compared with the learning based segmentation methods because:
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e On the one hand, we have a limited amount of 3D mesh animation data which may
be not sufficient to well support the training of learning based methods;

e  On the other hand, many of the learning based methods requires the manul labelling
and computing the correspondence among the training meshes, which requires extra
human operations that may not lead to ideal segmentation result due to human
interventions.

3.There is a little typo in the manuscript, such as, the manuscript still is not accepted right now,
therefore, the publication date should be removed. In the reviewer’s opinion, it is not suitable
that there is publication date in the manuscript. In addition, how to implement proposed
method should be presented in experimental section.

----> Response: We have corrected the mentioned typos.

Regarding to the implementation, we follow the complete spatio-temporal segmentation
based compression scheme shown in Figure 1. Both our approach and the newly included
comparative methods are implemented with Matlab. The implementation details are briefly
described in the first paragraph of Section 5.

In brief, the manuscript should be further revised. In particular, the comparison with latest
methods should be completed. Besides, more complete and full review work should be
performed. If these problems cannot be clarified, clearly, the persuasiveness of this manuscript
maybe greatly decreased.

----> Response: In the revised manuscript, we have not only included two more comparative
approaches [3][43], but also added the comparative results with more data (See Figure 10 and
the corresponding discussion texts in Section 5.4). These new comparative studies have
further demonstrated the competitive performance of our approach for the compression of
3D mesh animations.

Referee: 2
Recommendation: Needs Major Revision

Comments:

In this work, the authors propose a spatio-temporal segmentation for compression of 3D mesh
sequences. The idea is interesting and exploiting both temporal and spatial correlations could
lead to a better compression. This is an extension to a prior work of the authors [32] where this
main idea was proposed. In this paper, the authors have extended it with some changes in the
compression steps. This includes, improvement in segmentation boundary after decompression,
and another lossless compression step for coefficients. The authors have also shown some
additional experimental results.

The two additional contributions are minor modifications to the existing approach and are not a
significant contribution. Also, the effect of these two new components has not been studied
extensively. The only comparison we have is Figure 8.
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----> Response: In the revised manuscript, we have not only included two more comparative
approaches [3][43], but also added the comparative results with more data (See Figure 10 and
the corresponding discussion texts in Section 5.4). These new comparative studies have
further demonstrated the competitive performance of our approach for the compression of
3D mesh animations.

The evaluation of the proposed approach is not comprehensive. It is not clear why the selected
sequences and the evaluation metrics are not consistent with existing works such as [25, 53]. The
quantitative evaluation shown in Table 1 is not compared with any of the existing work. The KG
error/bpvf and STED/bpvf plots are only shown for one sequence.

----> Response: While there exists few compression approaches for 3D mesh animation
compression. In the revised manuscript, we have adapted two 3D mesh segmentation
approaches for the compression, with which we have conducted the comparative studies with
more data (See Figure 10 and the corresponding discussion texts in Section 5.4). As
mentioned above, the new comparative studies have further demonstrated the competitive
performance of our approach for the compression of 3D mesh animations.

The comparison with existing methods is also partial and only shown for one sequence. It is not
clear why the reconstruction error shown in Figure 10 for some samples is chosen for selective
methods and not all. Most of the methods used in the comparison are a decade old and it will be
really effective to use some recent works in the comparison with consistent data and evaluation
metrics.

----> Response: See the above response.

The authors have mentioned configuration of parameters as the main limitation of the proposed
approach in section 5.4. The discussion ends with a conclusion that this is not a limitation but a
good property of the approach. It is not clear what is being conveyed in this discussion.

----> Response: We have corrected our presentation in the Conclusion Section. The
configuration of the parameters is indeed a major limitation of our proposed approach, which
could be alleviated through empirical experiments. See the studies of the parameters in the
last paragraph of Section 5.2.

Referee: 3

Recommendation: Needs Major Revision

Comments:

The authors propose an adaptive spatiotemporal segmentation method which explores both
spatial and temporal correlations in order to cluster groups of vertices and batch of frames, that
minimize the number of principal components required for perceptually compressing dynamic
meshes.

The quality of this paper is a bit poor in terms of clarity of presentation. It seems that the
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authors do not use consistent set of symbols in the paper that makes

the math a bit difficult to read and follow. Moreover, the notation impedes readability. Egs. 2
and 3 use a Matlab-like subscript notation that | have not seen before,

and have some trouble parsing. Is this just indexing? Could it just be promoted out of the
superscript? In other places, such as in definition of X just after eq. (6),

there is a double subscript on V that (s also somewhat perplexing. Such inconsistencies can be
found in several places in the paper. A paragraph at the beginning of Section 3 that lays out the
notation would really have helped.

----> Response: Thanks for the suggestions. We have revised the symbols used in the
manuscript, and provided a symbol list in Section 3.

The proposed approach it seems that it would be practically useful for real-time compression of
dynamic meshes. To that end, the authors are kindly suggested to add details for performing fast
estimation of dynamic sub-spaces

that vary in time using for example incremental orthogonal iterations.

More importantly, they are suggested to provide also timing comparisons with the other recent
and relevant approaches. Complexity is also important, in addition to the

compression efficiency and reconstruction quality that have been adequately evaluated.

----> Response: Although we have spent significant efforts to implement parts of our
approach in parallel, we still cannot reach the real-time goal due to the computation on the
spatio-temporal segmentation. On the other hand, our approach may potentially support the
temporal block-by-block progressive compression.

In order to show the efficiency of our approach, we have presented the complexities of each
stage of our approach in Section 4. Additionally, we have shown the computational costs for
each data by using our approach in Table 1, and for each comparative study in Section 5.3
and Section 5.4.

I'm a bit also concerned about the evaluation section; for a field with this much previous work,
evaluating on only 6 mesh sequences seems pretty inadequate. There are plenty of mesh
animations out there floating around; maybe grab some of the sequences here?
http.//graphics.cs.cmu.edu/projects/sma/textData/

Ideally, though, it would be worth testing this method against some really long sequences as
well; it seems like this would highlight some of the advantages of this method.

----> Response: Unfortunately the link is no longer valid. After plenty of efforts, we have only
collected the ‘samba’ data (a dancing lady) from Ing. Libor Vasa at Department of
ComputerScience and Engineering, University of West Bohemia.

In fact, our compression approach takes input of 3D mesh animations, which are animated 3D
mesh with consistent topology. Due to this fact, our optional data for experiments is limited.

On the other hand, we have chosen the experimental data to extend the variety of the data as
large as possible: our experimental data shown in Table 1 covers both large length ('Flag’ has
1001 frames) and large models (‘March’, ‘Handstand’ and "Jump’ have 10002 vertices); both
articulated (‘March’, 'Handstand’, Jump’' and 'Samba’) and skinning (‘Flag’ and ‘Cloth’)
animations.
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The novelty as compared to the 13D version is quite limited. The policy included to ensure the
segmentation boundary after decompression is not novel, while a more detailed
description\evaluation is expected to increase the readability of the manuscript.

----> Response: Compared to the previous conference version (I13D'19 paper), this newly
revised version presents a more complete compression model, with not only using the lossless
compression stage to encode the coefficients to improve the compression rate, but also the
boundary consistency strategy to ensure the decoded data quality. With the additional

comparative studies, our revised manuscript has more than 50% new content in length.
Thanks to reviewers' suggestions, to improve the quality of descriptions, we have added a
symbol list in Section 3; we have rephrased the pipeline descriptions in Section 3; we have
also corrected the typos and clarified the confusion texts in the manuscripts.

The extra lossless compression step for encoding PCA basis is based on traditional and well
known approaches. The new experiments focus again on the reconstruction quality without
demonstrating the complexity and timing benefits which are also important for several 3D
animation applications.

----> Response: We have added the complexity analysis for the lossless compression step,
which is O(n) for both compression and de-compression. We have not specified the
computational time for the lossless compression step in Table 1 because it is too small
compared to the total process time. This is also the main motivation for us to add this step in
our compression pipeline, because it improves the compression ratio with nearly no extra
computational cost.

In the end, there may be something worthwhile in the paper. However, given the current
presentation, | am not sure that | am able to tease it out, so | am reluctant to advocate
acceptance.

----> Response: Thanks to the reviewers' suggestions, the presentation in our revised
manuscript has been significantly improved from the previous version.

Ideally, though, it would be worth testing this method against some really long sequences as
well; it seems like this would highlight some of the advantages of this method.

----> Response: We are glad because your suggestion indicates you have clearly understood
our approach. Unfortunately, the data link in the provided website is no longer valid. And
after many efforts, we still cannot collect a really long sequence for our experiments.

More importantly, they are suggested to provide also timing comparisons with the other recent
and relevant approaches. Complexity is also important, in addition to the

compression efficiency and reconstruction quality that have been adequately evaluated.

----> Response: In order to show the efficiency of our approach, we have presented the
complexities of each stage of our approach in Section 4. Additionally, we have shown the
computational costs for each data by using our approach in Table 1, and for each comparative
study in Section 5.3 and 5.4.
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In order to show the efficiency of our approach, we have presented the complexities of each
stage of our approach in Section 4. Additionally, we have shown the computational costs for
each data by using our approach in Table 1, and for each comparative study in Section 5.3
and 5.4.

Referee: 4

Recommendation: Needs Major Revision

Comments:
Positive aspects of the paper is the novel combination of both spatial segmentation and
temporal segmentation to find both subsequences of distinct dynamic behaviour and to find
rigid areas of the 3D mesh animations. The proposed compression algorithm is also evaluated
and compared to other 3D mesh animation sequences. A slight concern is that age of the
compression techniques used in the comparison ie. the state of the art techniques to which the
proposed method is compared:

+ Luo [32] is authors' own work

+ Karni [21] and Sattler [38] are both more than 14 years old

+ Vasa [46 and 47] are both more than 5 years old

+ Lalos is fairly recent (2017)

Negative aspects of the paper is the explanation of the proposed method that is quite difficult to
follow, as it lacks a proper motivation of what is being gained by combining both spatial and
temporal segmentation. The flow diagram is also confusing and the authors often using
mathematical notation that is confusing. The parameters for the algorithm used in the
evaluation also seems to be chosen in an arbitrary fashion, and not much is done to evaluate
the sensitivity of the proposed compression algorithm to the choice of parameters. Section 5.4
describes the limitation of the proposed method, and states that the method is not sensitive to
the choice of parameters, but very little evidence is presented to support this claim. It is also not
clear what the origin of the animation sequences are that is used in the evaluation.

In short | am of the opinion that the paper presents an interesting and novel method for
compression of 3D animation sequences. However the Section 3 and 4 need to completely
reworked to better motivate the proposed method and to also present the method in a more
clear and logical manner. The experiments also need to be expanded to show that the proposed
algorithm is insensitive to the choice of parameters (as is claimed in the paper).

----> Response: Since all the above comments correspond to the following questions, please
check below we have responded each of your concerns.

The following is a number of questions that arose from reviewing the paper.
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- Maglo classiy existing 3D mesh animation compression methods into five different categories.
What are these five categories and why does the paper chose to rather use two categories,
namely non-segmentation based and segmentation based? Can the five categories of Maglo be
classified as either segmentation or non-segmentation based?

----> Response: We have added the 5 categories in the texts.

- What is meant with "semantic behaviours".
----> Response: Rather than the plain coordination data, “semantic behaviors” can be the
actions of the dynamic 3D mesh or the movements of each functional parts of the mesh.

- According to the paper, the disadvantage of the spatial segmentation approaches is that they
assume that the whole animations has been given. What is the disadvantage of the temporal
segmentation approaches, except that they are not as efficient for 3D mesh animation
compression. The related work should make more clear the advantages and disadvantages of
spatial segmentation based compression and temporal segmentation based compression. After
reading the related work | am still not sure the deficiency is being addressed by the proposed
method.

----> Response: As revised in the last paragraph in Section 2, rather than discussing the
disadvantages of the existing spatial and/or temporal segmentation methods, our spatio-
temporal segmentation approach takes the advantages of both for compression.

- How is the affinity between two mesh subsequences calculated.
----> Response: The affinity is eventually computed with the kernel function in Eq.(3), which is
inspired from [51].

- What dataset is being used to for the experimental evaluation?
----> Response: We have added a paragraph in the beginning of Section 5.1 to present the
experimental data.

- Section 3 gives an overview of the approach proposed in this paper. It was quite difficult to
follow, because the overview immediately begins with the detail of the approach, without first
given an overview of what the approach is trying to achieve by combining the spatial and
temporal segmentation approaches. | would appreciate if the authors could explain in general
terms (by using a simple example) the functioning of the algorithm. My understanding of the
approach is as follows: it appears as if the actual compression occurs by applying a PCA-based
compression algorithm to vertex groups. The vertex groups are extracted from a temporal
subsequence of mesh frames, by applying some form of spatial segmentation that uses the
Maximal Edge-length Change (MEC) between edge pairs (I assume edge pairs are vertices on the
edges of the meshes). The purpose of the spatial segmentation is to created groups of rigid
regions that have similar movement behaviour. Lastly the temporal subsequences are extracted
in such a manner that each subsequence contains a distinct type of dynamic temporal
behaviour. The temporal segmentation is determined by analysing the number of principal
components of each frame of each vertex group. A new segment is detected (i.e. a new type of
distinct temporal behaviour) when the number of principal components of any of the vertex
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groups changes.
----> Response: Thank you for the suggestion. We have added a symbol list in Section 3.

- | would strongly suggest that in the explanation of the proposed approach that the authors
avold referencing sections that only appear later in the paper.

----> Response: Thank you for the suggestion. We have corrected all such presentations in
the manuscript.

- The flowdiagram illustrated in Fig. 1 is quite confusing and frankly does not make a lot of
sense. For example | don't understand how both the Yes and No branch of |alpha tau| =
gamma”{max} can both lead to the encoder?

----> Response: To improve the readability of Figure 1, we have added a symbol list right
before the figure.

- What is tau and why does the algorithm need to use the absolute value of tau and compare it
to the maximimal length gamma*{init}. It seems tau is equal to b + epsilon, but it is still not
clear why the absoluate value is needed.

----> Response: After computing the initial temporal cut in Section 4.1, the temporal cut
boundary was denoted as |\tau| (renewed as |\tau”{init}| in the revision), which is not an
absolute value.

- What is |\alpha\tau|? Does the symbol alpha imply that |\alphaj\tau| is some integer factor of
\tau?

----> Response: No. We took \alpha]\tau| together as a special symbol. But we have renewed
this symbol in the revision. See the newly added symbol list in Section 3.

- What is the origin of the evaluation data?
----> Response: We have added the first paragraph in Section 5.1 to provide the details of
the data.

More detailed exploration of algorithm parameters to show that the proposed method is not
sensitive to the choice of parameters.

----> Response: Please find our explanations and discussions to the key parameters in our
compression scheme in the following Responses.

- Why is the maximal length defined as gamma”{init} and how s that different from
gamma”™{max}. Is it simply the maximal length of the animation subsequence that is being
considered in various parts of the algorithm? If so, it is confusing to the reader. It is also unclear
why it is important that the maximum length of the subsequence be given when the initial cut is
made and when the temporal segmentation is determined.

----> Response: In our compression scheme, gamma”{init} is used to detect the motions in
the dynamic mesh and to compute the spatial segmentation. gamma”{max} is used to detect
the temporal segmentation.

Note that gamma”{max} is used in our compression scheme to simulate a block-by-block
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progressive compression. That is, in the case that a temporal segmentation (Section 4.3)
boundary cannot be found in a long term, we send the scanned data for compression to avoid
the compressor being idle for too long time (case (lll) in Figure 2).

We have added a symbol list in Section 3 to explain these parameters.

- The parameters used in the evaluation reported in Table 1 seems to be arbitrarily chosen. Each
animation sequence appears to be only evaluated using a single value for epsilon. It also
appears as if epsilon was optimised for the specific sequence. gamma”{init} seems to be always
chosen to be 3 or 4 times epsilon. Is there a specific reason for this choice? Only two value for
gamma”{max} are used for each sequence. However the gamma'{max} again seems to be chose
arbitrarily as it varies between 2.5 and 5 times gamma“{init}. The paper needs to more clearly
motivate the values of the parameters used in the evaluation and also conduct more
experiments to show how sensitive the proposed compression method is to the value of the
parameters.

----> Response: epsilon (rewritten as w in the revision) was the window size for smoothing,
which may be related to the frame rate of the animation. For the moment, we set this
parameter as an arbitrary number for each type of the data in Table 1. We may be able to
evaluate the optimized value when we have sufficient experimental data in the future.
gamma”{init} and gamma”{max} are explained in the above respond.

We have added a symbol list in Section 3 to define these parameters.

- How independent is the compression algorithm of the number of spatial segments? The results
presented in Table 1 only has 4 or 8 spatial groups. This also needs to be evaluated more
thoroughly. For instance what happens if the maximum number of spatial groups specified for
the compression algorithm is less than the number of groups found in the animation? Choose
the number of spatial groups to be equal to the number of cores of the computer that is being
used to evaluate the performance of the compression algorithm is quite arbitrary.

----> Response: Based on the initial vertex clustering (can be seen as over-segmentation) in
Section 4.2.1, our rigid cluster grouping presented in Section 4.2.2 is based on the iterative
clustered-PCA grouping method. In this grouping method, each rigid cluster is grouped to the
closest center (see Eq.(4)), which may result in empty groups. That is, the resulted number of
groups may be less than the user-specified maximum numbers.

In the experiments with all the data in Table 1, the final numbers of groups are fewer than 8.
This is reasonable because the quantization of the PC basis and coefficients will increase and
thus reduce the compression rates.

- It does not appear as if parallelization has much effect on compression. Can the authors
comment?

----> Response: As explained above, the number of groups cannot be large, and thus our
parallelization is implemented among few groups. For this reason, the communication for the
parallelization is another cost. Therefore, the parallelization in our compression scheme
indeed cannot bring significant efficiency improvement.

- "Our segmentation scheme utilizes a two-rounds temporal segmentation" - does this mean
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that each animation sequence will only ever undergo two rounds of temporal segmentation? Or
does it mean that the animation sequence will continuously apply successive rounds of temporal
and spatial segmentation until the whole animation sequence has been processed?

----> Response: It is the latter. We have rephrased this description in the Conclusion section.

Abstract
"We have conducted intensive experiments" should be "We have conducted extensive
experiments"

Introduction

- "increasing large" should be "increasing"

- "compression is one of the key techniques for storing, transferring, and display of" should
perhaps be "compression is one of the key technques for the storage, transfer, and display of"

- "cannot be straightforwardly" should be "cannot be directly"

- "different mesh surface areas" should be "different mesh surfaces"

Related Work

- "The key of the spatial segmentation" should be "The key to spatial segmentation”

- "lts main limitation (s its heavy computational" should be "The main limition is the heavy
computational"

- "each of which represents a different" should be "each of which represents different"

- "more denser" should be "more dense"

- "Given a mesh sequence, after partitioning the sequence into clusters with similar poses, then
researchers either apply" should be "Given a mesh sequence, after partitioning the sequence into
clusters with similar poses, researchers either apply"

- "This allows to save the storage since a small" should be "This reduces the storage since only a
small"

- "In summary, spatial and temporal segmentations can help to reveal the spatial and temporal
redundancies within 3D mesh animations, which benefits for the development" should rather be
"In summary, spatial and temporal segmentations can reveal the spatial and temporal
redundancies within 3D mesh animations, which aids the development"

Overview of our Approach

- "In general dynamic mesh sequences mainly have two different forms, namely, time-varying
meshes and deforming meshes." should perhaps be "In general, dynamic mesh sequences
mainly have two different forms: time-varying meshes and deforming meshes."

- "Then, we define the trigger" should be "We define the trigger"

- "from the step 1" should be "from step 1"

Initial Temporal Cut

- "Between them, the bi-direction search method is more robust on detecting the temporal cut
between two successive dynamic behaviours" should be "For detecting the temporal cut between
two successive dynamic behaviours, the bi-directional boundary candidate search is more
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robust than the uni-directional boundary candidate search. The bi-direction search method is
more robust"

Vertex Clustering

- "base on a two-stages, bottom-up" should be "base on a two-stage, bottom-up"
- MEC - define the acronym at first use

- Caption of Fig. 3 "MMN curve" should perhaps be "MMD curve"?

Temporal Segmentation
- PCs - define acronym when first used. | suspect "PCs" refers to "Principal Components"
- Fig 5. - what is gamma”{act}? Is this supposed to be gamma”{max}?

Compression
- "the boundary inconsistency may occur" should be "boundary inconsistencies may occur"

Sequential Processing

- "This indicates none of distinct behaviors has " should be "This indicates that no distinct
behavior has "

- Fig. 7 - don't reuse Roman numerals. The Roman numerals have already been used in the
flowchart in Fig. 1. Reusing the Roman numeral simply confuses the reader.

Experimental Setup

- "Finally, after the encoding of the PCA decomposition" should be "Finally, after encoding the
PCA decomposition”

- "In specific, the STED error can be defined" should be "The STED error can be defined"

Comparative Studies

- "Especially, we show" should be "We show"

- "It is worth to mention that although the method" should be "Although the method "
- "to compute a average pose" should be "to compute the averaged pose"

- "called as and the" should be "referred to as the"

- "in this writing" should be "in this article"

Limitations

"To gain investigate" should be "To investigate"

----> Response: Thanks a lot for the detailed suggestions. We have corrected all the above
typos and descriptions.

Positive aspects of the paper is the novel combination of both spatial segmentation and
temporal segmentation to find both subsequences of distinct dynamic behaviour and to find
rigid areas of the 3D mesh animations. The proposed compression algorithm is also evaluated
and compared to other 3D mesh animation sequences. A slight concern is that age of the
compression techniques used in the comparison ie. the state of the art techniques to which the
proposed method is compared.
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----> Response: In the revised manuscript, we have adapted the skeleton extraction based [3]
and the hierarchical regional growing segmentation [43] methods for mesh compression, with
which the comparison results have further shown the advantage of our method. See the
detailed descriptions in Section 5.4.

Better explanation of the algorithm.
----> Response: Thanks to the reviewers' helpful suggestions, we believe our presentation has
been significantly improved in the revised manuscript.

Better motivation as to what the authors are trying to achieve by combining the spatial and
temporal segmentations before compression.

----> Response: We have revised our presentation in Section 2 to further clarify our
motivation. As revised in the last paragraph in Section 2, rather than discussing the
disadvantages of the existing spatial and/or temporal segmentation methods, our spatio-
temporal segmentation approach takes the advantages of both for compression.

Referee: 5 (Incomplete review, sent to us separately)

1. Difference between two contributions highlighted in Introduction section is not clear. May be
re-phrasing the sentences might help?
----> Response: We have revised our descriptions on contributions.

2. Typo? Page 2, line 43 'we present detailed of': should be 'details'?
----> Response: Thanks. It is corrected.

3. Page 4, section 3, second paragraph: description of gamma”~max and gamma®init is not
clear. Please describe them clearly.

----> Response: Thanks. It is corrected. And Section 3 has been mostly rephrased and a
symbol list is also added.

4. Can mention advantage of bi-directional search over uni-directional search.

----> Response: As revised in the paragraph below Eq. (1), although the uni-directional search
method may have advantage on effciency, the bi-directional search method is more robust in
detecting the temporal cut between two successive dynamic behaviors [4, 16].

5. Can you describe how vertex trajectories are computed?
----> Response: As revised in the ‘Identify the rigid regions’ stage in Section 4.2.1, the average
vertex trajectory among all vertices is computed for the center of each cluster.

6. How is the reconstruction error defined in equation 4 is different from that in [38]? So
contribution in the step 'Rigid cluster grouping' is not clear.
----> Response: The expression of Eq.(4) may be complicated but it should become easier if
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one notice that C[j]+\widehat{\delta_j}) is the classical PCA decomposition. It is different from
[38] (now [44]) that it was vertex-wise (iterative PCA) in [38] but cluster-wise in our approach
(iterative cluster-PCA). Since the number of clusters is greatly fewer than the number of
vertices, the computational cost is significantly reduced, which is the main contribution of this
step.

7. How is the adaptiveness of gamma”max is s decided? Does it mean it requires manual tuning?
----> Response: As discussed in Section 5.2, normally, gamma”~max is set to be large enough

so our approach can automatically determine the temporal boundary. On the other hand, it

does not have to be too large because the compressor remains idle while waiting for the

segmentation. We believe users with a few trials will gain sufficient experience to use our

compression approach.
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increasing large. As a new type of the growing data, many research efforts on the processing and
analysis of 3D mesh animations have been conducted in recent years. Among them, compression
is one of the key techniques for the storing, transferring, and display of 3D mesh animation data
towards broader applications.

To date, researchers have developed a variety of efficient compression techniques for 2D video
such as MPEG, H.263, and H.265. However, these compression methods for 2D video cannot be
straightforwardly applied to 3D mesh animations due to the fundamental structure and representa-
tion differences between 2D video and 3D mesh animation data. For example, 3D shapes are often
highly sensitive to vertex outliers, while an irregular pixel in an image may not be even visually
noticeable. Therefore, with the strict requirements of 3D shape quality, efficient compression of 3D
mesh animation data has become an increasingly important research topic.

The key information of a 3D mesh animation is its dynamic behavior, which drives the de-
formations of different mesh surface areas. As reported in existing literature, we can achieve a
better performance on the compression of 3D mesh animations with repetitive motions or rigid
mesh segments, which contain significant redundancies either temporally or spatially [25, 41, 46].
Therefore, it is important to exploit the dynamic behaviors based on both spatial and temporal
segmentation within a 3D mesh animation for effective data compression. However, due to the
high complexity and the large data size, it remains a challenge to jointly explore the spatial and
temporal segmentation to further improve the performance of compressing 3D mesh animations.

In this paper, we propose an adaptive spatio-temporal segmentation based model for the compres-
sion of 3D mesh animations. Specifically, we first introduce a temporal segmentation scheme that
explores the temporal redundancy by automatically determining the optimal temporal boundaries.
Then, we also introduce a novel two-stage vertex clustering approach to explore the spatial redun-
dancy by automatically determining the number of the vertex groups with optimal intra-affinities.
Based on the above adaptive spatio-temporal segmentation schemes, we develop a full scheme of
its application for the compression of 3D mesh animations. Through many experiments, we show
the effectiveness and efficiency of our approach compared to the state of the art mesh animation
compression algorithms.

The contributions of this work can be summarized as follows:

e We have developed an adaptive spatio-temporal segmentation approach which explores the
spatial and the temporal redundancy simultaneously for the 3D mesh animations based on
the dynamic behaviors.

e We have proposed a compression model for 3D mesh animations by coupling the novel
adaptive spatio-temporal segmentation and the compression of 3D mesh animations. Through
many experiments as well as direct comparisons with state-of-the-art 3D mesh animation
compression methods, we show the effectiveness and efficiency of our compression model.

The remainder of the paper is organized as follows. We first review previous and related works
on the compression of 3D mesh animations in Section 2. In Section 3, we briefly give the overview
of our compression method. Then, we present the detailed of our spatio-temporal segmentation
model and its application to the compression of 3D mesh animations in Section 4. The experimental
results by our method are shown in Section 5. Finally, we conclude this work in Section 6.

2 RELATED WORK

While motion capture data is becoming important in many areas including graphics, visualiza-
tion, gaming, and medical applications, compression of motion capture data has been thoroughly
studied using various techniques of wavelets [4], quadratic Bézier curve fitting [23], model-based
indexing [5], motion pattern-based indexing [13], etc. To achieve a high efficiency, Kwak et al.
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proposed a hybrid scheme that is similar to hybrid video encoders, which contains predictive
coding, DCT transform, quantization, and entropy coding steps [24]. Furthermore, Firouzmanesh et
al. incorporate the factor of attention simulation in the model for fast compression [11]. In the work
of [50], Wang et al. proposed a novel Alpha Parallelogram Predictor with context-based arithmetic
coding to correct the predictions for the lossless compression of motion captured data. However,
existing compression methods for motion captured data cannot be directly applied to compress
dynamic mesh sequences due to significantly more intensive spatial redundancies of the dynamic
meshes.

The compression of dynamic mesh sequences has been a persistent research topic in the past
several decades. In [34], Maglo et al. classify existing 3D mesh animation compression methods
into five different categories. As another classification approach, we group the existing methods
into two general types: non-segmentation based methods and segmentation based methods. In this
section, we first review the non-segmentation based compression methods, and then focus on
the segmentation based compression methods, including spatial segmentation based methods and
temporal segmentation based methods.

Non-segmentation based compression: Among the existing methods, a large portion of the
methods take a matrix form of the 3D mesh animation, on which many of classical data compression
methods and algorithms can be applied, including Principal Component Analysis (PCA) [2, 18, 30],
linear prediction encoders [21, 40, 41, 54], wavelet decomposition [14, 36], and the Moving Picture
Experts Group (MPEG) framework [35]. PCA is a classical method that can decompose a large matrix
as the product of two much smaller matrices, with minimal information loss. Following the work of
[2], Lee et al. [27] apply PCA to 3D mesh animation data after removing its rigid transformations.
Later, researchers have used the linear prediction theory to further encode the resulting coefficients
from PCA [21, 45, 45, 47]. Similarly, researchers have proposed a Laplacian-based spatio-temporal
predictor [46] or curvature-and-torsion based analysis [53] to encode the vertex trajectories for
dynamic meshes. Moreover, Liu et al. [30] use a subspace optimization technique to accelerate the
PCA iterations, and Hou et al. [18] formulate PCA to an optimization problem with constraints
on the orthogonality and solve the problem with an inexact augmented Lagrangian multiplier
method. The above non-segmentation compression methods improve either the efficiency or the
effectiveness of PCA-based 3D mesh animation compression. However, they assume an entire
sequence as the given input, and do not explicitly exploit the dynamic behaviors enclosed in the
input animation.

Segmentation based compression: The key information of a 3D mesh animation is its enclosed
dynamic behavior; therefore, it is important to exploit the dynamic behavior coherence in 3D mesh
animations for effective compression, using either spatial segmentation or temporal segmentation
methods.

Spatial segmentation based compression: The key of the spatial segmentation of a 3D mesh an-
imation is to understand its semantic behaviors. Many previous methods have been proposed
to compute the spatial segmentation for 3D mesh animations, which can generate different spa-
tial segmentation schemes for animations with different motions [1, 9, 20, 22, 26, 28, 51]. These
spatial segmentation results can be useful for the skeleton extraction/rigging for animation genera-
tion [9, 20, 22, 26] and semantic representation of the dynamic meshes towards shape similarity
measurement [1, 29, 51], etc.

The spatial segmentation is also useful to reveal the spatial redundancies for the compression
of the 3D mesh sequences. Hijiri et al. [16] separately compress the vertices of each object with
the same movements to obtain an overall optimal compression rate. In order to adapt spatial
segmentation for compression, Sattler et al. [38] proposed an iterative clustered PCA method
to group the vertex trajectories that share similar Principal Component (PC) coefficients and
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then further compress each cluster separately. Its main limitation is its heavy computational cost.
Similarly, Ramanathan et al. [37] compute the optimal vertex clustering for the optimal compression
ratio. However, all the above methods assume the entire animation has been given at the beginning.

Temporal segmentation based compression: The objective of temporal segmentation is mainly
to chop a 3D mesh animation into sub-sequences, each of which represents a different dynamic
behavior. Temporal segmentation has been exploited for the compression of motion capture data [12,
13, 38, 56], but the efficiencies of these methods for 3D mesh animation compression may be
significantly decreased since 3D mesh surfaces typically have much more denser vertices and
additional topology than motion capture data [33]. Given a mesh sequence, after partitioning the
sequence into clusters with similar poses, then researchers either apply PCA to compress each
group to achieve the optimal compression ratio [31] or extract a key-frame of each cluster and
encode the rest frames as the blending weights of the extracted key-frames [15]. Similarly, in [6],
Chen et al. apply the manifold harmonic bases to characterize the primary poses (key-frames) and
the deformation transfer technique to recover the geometric details of each frame within a cluster.
This allows to save the storage since a small number of the key-frames and a few coefficients would
be needed for animation decompression. Yang et al. [52] group the temporal frames with their
motion trajectory changes, and then apply the spectral graph wavelet transform block encoding
to convert the dynamic mesh sequence into a multi-resolution representation for the progressive
streaming of the mesh sequence. Recently, Lalo et al. [25] proposed an adaptive Singular Value
Decomposition (SVD) coefficient method for 3D mesh animation compression. They first divide a
mesh sequence into temporal blocks of the same length and treat the first block with SVD. Then,
the following blocks are treated with the adaptive bases from the previous block without solving
the full SVD decomposition for each block, which reduces the computing time.

In summary, spatial and temporal segmentations can help to reveal the spatial and temporal
redundancies within 3D mesh animations, which benefits for the development of effective com-
pression algorithms. The new compression scheme for 3D mesh animations, presented in this work
alternately exploits both spatial and temporal redundancies.

3 OVERVIEW OF OUR APPROACH

In general dynamic mesh sequences mainly have two different forms, namely, time-varying meshes
and deforming meshes. A time-varying mesh may have different numbers of vertices and different
topological connectivities at different frames, whereas a deforming mesh has a fixed topology
across frames. Note that we can always compute the inter-frame vertex correspondence to convert
a time-varying mesh into a deforming mesh [43]. For the sake of simplicity, we focus on the
deforming mesh data in this work.

Then, we define the trigger conditions for the two important steps in our method. (1) Initial
Temporal Cut: given the maximal length y** if any dynamic behavior has been detected in the
mesh sequence (with no more than y ™ frames) (see Section 4.1), and (2) Temporal Segmentation:
given the maximal length y™%* if any dynamic behavior has been detected in any of the vertex
groups (see Section 4.2 and 4.3).

We briefly describe the pipeline of our segmentation scheme as follows. The algorithmic descrip-
tion is also shown in Figure 1.

@. We first conduct an initial temporal cut to produce a subsequence S with the maximal
possible length of y ", see Section 4.1.

(2. If none of distinct behaviors can be detected in S, i.e., the boundary frame b = yi"” , the
subsequence S will be directly sent to the compressor (the case (I) in Figure 2), see Section 4.4.
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Fig. 1. Pipeline overview of our spatio-temporal segmentation scheme for compression. (I, Il, I, and V)
are the 4 types of the segmented animation blocks, which are illustrated in Figure 2. Note that |z| and
|at| denote the length of the detected initial temporal cut (see Section 4.1) and temporal segmentation
44 (see Section 4.3), respectively; yi™* and y™3* denote the maximum range for the initial temporal cut and
45 temporal segmentation, respectively. The numbers in circles correspond to the steps described in Section 3.

48 ®. Otherwise (i.e., distinct behaviors are detected in S), we perform the 2-stage vertex
49 clustering on S, see Section 4.2.

50 @. Then, we continue to compute the temporal segmentation of each vertex group (spatial
51 segment) within next y™%* frames, by observing the dynamic behaviors, see Section 4.3.
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®. If we have detected distinct dynamic behaviors of any vertex group before y™* is

reached, the vertex trajectories of each group up to the detected boundary frame are sent
to the compressor, separately. See Section 4.4. After the compression, we repeat the process
from the step 1 (the case (II) in Figure 2).

(©®. Otherwise (i.e., we have not detected a temporal segmentation by y™%~), we also send
the data of each vertex cluster to the compressor, separately (the case (III) in Figure 2). See
Section 4.4. Afterwards, we reuse the previously obtained vertex clustering and continue
observing the temporal segmentation in the remaining mesh frames. That is, we repeat the
process from the step 4 for the remaining mesh frames (The case (IV) in Figure 2).

act
)4

/W

| encoder |

Fig. 2. 4 different types of mesh animation blocks sent to the encoder: (1) 7] = y™, (II) |z] < y'™ and
lat| < y™a% (1ll) 7] < y'™ and |at| = y™%%, and (IV) direct temporal segmentation based on the previous
vertex grouping results.

4 SPATIO-TEMPORAL SEGMENTATION FOR COMPRESSION

We first describe our spatio-temporal segmentation model that consists of the initial temporal
cut (Section 4.1), vertex clustering (Section 4.2), and temporal segmentation (Section 4.3). Then,
we apply spatio-temporal segmentation results for the compression of 3D mesh animations in
Section 4.4. Finally, we discuss different situations while processing a continuous mesh sequence
as the input in Section 4.5.

4.1 Initial Temporal Cut

Let us denote a mesh animation as ({V{ }, E), where E represents the connectivities among vertices,

and V{ = (x{ s y{ , z{ ) represents the 3D coordinates of the i-th vertex (i = 1,...,V) at the f-th
frame (f = 1,..., F). Here V is the total number of vertices, and F is the number of frames of the
animation sequence.

Given a mesh sequence, the objective of the initial temporal cut is to determine a boundary
frame V!7!, so that the dynamic behavior in [V?, VI71] is distinctive from that in [VI71*1, V”i"”]. To
this end, we can formulate the initial temporal cut as the following optimization problem:

min (V! VOL VO V), M

be[L,ynit]
where b is a varying frame index and I(-, -) computes the affinity between two mesh subsequences.
Available techniques for computing I(:, ) can be classified into two categories: 1) front-to-end
uni-direction boundary candidate search, and 2) bi-directional boundary candidate search. Between
them, the bi-direction search method is more robust on detecting the temporal cut between two
successive dynamic behaviors [3, 12]. Inspired by the kernelized Canonical Correlation Analysis
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(kCCA) approach [17, 39], and its successful application to semantic temporal cut for motion capture
data [12], we formulate the initial cut to a Maximum-Mean Discrepancy (MMD) problem as follows:

1 T; i:bi ji:bj
[T |2 Zl',j}l K(Vbl b +6’Vbj bﬂ—e)

. N [Ti| |21 bisbi+e bibi+e
be[lr,rxlilr{}t_g] IT1[| T2 2 |T%j f(bv b’bv ) 2)
’ 1 2 i:bi+ ibj+
+Wzi,j K(V E,Vj J e)

where T; is the subsequence [V!,... ,Vb] and T, is the subsequence [V”“, . ,Vyin“‘e], eisa

predefined parameter to ensure smooth kernels.

The kernel function in Eq. 2 is defined as follows:

K(Vbi:bi+e’vbj:bj+6) — eXp(_)L||Vbi:bi+6 _ Vbj:bj+e ”2) (3)

where A is the kernel parameter for K(-) [44]. Due to the symmetric property of the kCCA, i.e.,
K(A,B) = K(B, A), we obtain a symmetric kCCA matrix for the animation block.

Finally, we can obtain a boundary frame V!7! for the initial cut by solving the objective function
in (Eq. 2). Note that |z| = b + € due to the usage of a smoothing window. Meanwhile, we denote the
detected initial temporal cut as 7. Figure 3 shows one of the initial cuts of the ‘March’ data, with
ymit = 20 and € = 5.

The complexity of the above bi-directional search for the initial temporal cut is O(|y**|?), which
is less efficient than the uni-directional methods with O(]y*!!|). However, in our context, we
compute the initial temporal cut within a short mesh sequence [1, y'**], which is a small cost on
the computation and thus will not cause notable delay to the overall compression framework. The
settings of y'™! for different experimental data are presented in Table 1.

4.2 Vertex Clustering

In this section, we describe a vertex clustering (spatial segmentation) algorithm based on a two-
stages, bottom-up hierarchical clustering algorithm to obtain optimal spatial affinities within
segments.

4.2.1 Initial Vertex Clustering. After the initial temporal cut, 7 is obtained; we then compute the
vertex clustering based on the dynamic behaviors of different vertices. The pipeline of our approach
is shown in Figure 4(LILIII).

In this initial vertex clustering step, we first segment a dynamic mesh based on rigidity, which
can be described as follows.

e Compute the MEC for all edge pairs. Similar to [28, 51], we compute the Maximal Edge-length
Change (MEC) within |z| frames for each vertex pair, see Figure 4(I).

e Binary labeling of vertices. We fit the MEC of all the edges as an exponential distribution epd,
see the top of Figure 4(I). Then, with the aid of the inverse cumulative distribution function
of epd, we can determine a user-specified percent of the edges as the rigid edges (p = 20%
in our experiments). Thus, the vertices that are connected to the rigid edges are called the
rigid vertices, and the remaining vertices are called the deformed vertices in this work, see
Figure 4(II).

o Identify the rigid regions. Based on the above binary labeling results, we merge the topologi-
cally connected rigid vertices into rigid regions, which become initial rigid vertex clusters.
We also compute the center of each cluster as the average vertex trajectory for each cluster.

o Rigid clusters growing. Starting with the above rigid clusters, we repeatedly merge the con-
nected neighboring deformed vertices into the rigid cluster with the most similar trajectories,
and update the center of the corresponding rigid cluster.
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Fig. 3. An example of the initial temporal segmentation of the ‘March’ data, with the pairwise frame based
kCCA matrix (Eq. 3) in the top panel and the MMN curve (Eq. 2) in the bottom panel. b is the detected
boundary frame.

The initial vertex clustering is completed till every deformed vertex has been merged into a rigid
cluster 8’ (i = 1,...,k, k is the total number of the clusters), see Figure 4(III).

4.2.2  Rigid Cluster Grouping. In the second-stage vertex clustering, we further classify the rigid
clusters to w groups with high internal affinities. In [38], Sattler et al. proposed an iterative clustered
PCA based model for animation sequence compression. Inspired by this work, we design the
second-stage vertex clustering by iteratively classifying and assigning each rigid cluster to the
group with the minimal reconstruction error until the grouping remains unchanged. Since the
iterative clustered-PCA is performed on the initial vertex cluster, it works very efficiently, unlike
the case in [38].
The reconstruction error of a rigid cluster §/ can be defined as follows:

16; = 811 = 118, — (CLj] + 8)II%, @)

where 3; is the reconstructed cluster by using PCA, C[}] is the center of each group (j = 1,.. ., w),
and J; is the reconstruction by using the PCA components (see Eq. 6). Note that we have C[j] in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Page 47 of 71 Transactions on Multimedia Computing, Communications, and Applications

oNOYTULT D WN =

Spatio-temporal Segmentation based Adaptive Compression of Dynamic Mesh Sequences 111:9

‘deformed’

(1) (1) (1) (V)

Fig. 4. Pipeline of the vertex clustering within an initial temporal cut of the ‘March’ data: (I) Maximal Edge-
length Change (MEC) for all the edge pairs and their distribution, (Il) Binary labeling of vertices, (I1l) the
rigid clusters resulted from the initial vertex clustering, and (IV) the rigid cluster grouping results.

Eq. 4 because PCA contains the centering (mean subtraction) of the input data for the covariance
matrix calculation.

Figure 4 illustrates the process of the rigid cluster grouping with the ‘March’ data. The full
process of the rigid cluster grouping is also described in Algorithm 1. As an example result in
Figure 4(IV), the relatively less moved rigid clusters, ‘head’, ‘chest’ and ‘right-arm’, are classified
into the same group. Note that we obtain large vertex groups because the input mesh are smooth
on the surface (see Table 1), unlike the motion Capture data containing sparse vertex trajectories
that may lead to small groups. Moreover, the computational cost for the initial vertex clustering
presented in Algorithm 1 is relatively small because both the number of clusters k and the number
of groups w are small.

4.3 Temporal Segmentation

After obtaining a set of the spatio-temporal segments L();(j = 1, ..., ») for the initial temporal
cut 7, we further introduce a temporal segmentation step as follows:

e For each vertex group, we stop observing the number of PCs once it is changed within the
current sliding window. In this way, we can obtain a Num-of-PCs curve for each vertex group,
see the bottom of Figure 5.

e To this end, similar to [21], the temporal segmentation boundary is determined as the first
frame where any Num-of-PCs curve has changes, see the bottom-right of Figure 5.

The full description of the temporal segmentation is presented in Algorithm 2, with the com-
plexity of O(wy ™), where y™%* denotes the maximal length of temporal segments. Note that the
computational cost of the PCA decomposition increases exponentially with the input data size. In
order to balance the computational cost and the effectiveness of PCA, we set an adaptive y™** for
each of the input data, see Table 1. The detailed discussion of the involved parameters y™%* and
the implementation of the algorithm are described below.
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Algorithm 1 Rigid Cluster Grouping

1: procedure RCGrouping(group number:w, clusters: §',i = 1,...,k)
2 fori=1—- wdo > group initialization
3 L[6'] i > initial group label
4 Cli] « & > initial group center
5: end for
6 while L’ # L do
7 L' L
8 fori=1—-kdo > k clusters
9: forj=1-> wdo > @ groups
10: dj] = ||6% - 6]’.'||2 > Eq. 4
11: end for
12: L[§%] = min;d[j] > assign 8' to the closest group
13: end for
14: update the group centers C[i],V i € [1 w]
15: end while

16: end procedure

£

! 1
N N
|- L.
1Y |

7? —:

=7 frame index
yacté

Fig. 5. lllustration of the temporal segmentation. The top row shows a sampled mesh sequence, with a
bounding box as a sliding window. The size of the window is the length of the initial temporal cut, i.e., |7].
The bottom-left shows the vertex grouping of the initial temporal segment, and the bottom-right contains
the change of the number of PCs for each vertex group in the sliding window. y™%* is the maximal possible
delay, and |at] is the detected temporal segmentation boundary.

e Maximal length of temporal segments, y™%*. The computational cost of the PCA decomposition
increases exponentially with the input data size. In order to balance between the computational
cost and the effectiveness of PCA, we set an adaptable y™* for each of the input data, see Table 1.

e Parallel computing. The temporal segmentation presented in Algorithm 2 is designed for each
vertex group (spatio-temporal segment), and the vertex groups are independent of each other. Thus,
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we can implement the temporal segmentation for each vertex group in parallel. The computational
time statistics in Table 1 show the efficiency improvement through parallelization.

Algorithm 2 Temporal Segmentation

procedure TempSeg(mesh sequence: V™" initial cut:r)

2: forj=1—-> wdo
PCj_= PCA(vjlflfl) > #PCs of the j-th vertex group within t
4: end for
fori=|r|+1— y™* do
6: forj=1— wdo
PC; = PCA(V;(’*'T"I)
8: if PCj # PCj_ then
break
10: end if
end for
12: end for
b=i > boundary index

14: end procedure

4.4 Compression

After the above spatio-temporal segmentation, we apply PCA to compress each segment with a
pre-defined threshold on the information persistence rate pu € [0 1], which is used to determine the
number of PCs to retain after the PCA decomposition, i.e.,

k |n|
2. (001 ) (o0 = p. 5)

where k < n, and {0;}(i = 1,...,n) are the eigen-values of the data block in a decreasing order.
Therefore, we can control the compression quality by manipulating the value of p. Specifically, by
increasing u, we have less information loss but need more storage space after compression, and
vice-versa.
® Encoder. For a vertex group L(5);, i.e., the j-th vertex group within the i-th temporal segment

art;, we denote its compression as follows:

g PCA L i pi

X & Al xB, (6)

_ aT; . . i . . . ) i i

where X = VL( Y for simplicity, A} is the score matrix of dimensions 3|VL(5)}| X kj, B} is the
coefficient matrix of dimensions kj’: X |az;], and X denotes a centered matrix of X by subtracting

the mean vectors X, i.e.,
X=X-X (7)
Boundary consistency. As can be seen in Figure 6(II), the boundary inconsistency may occur due
to the independently chosen PCs from the two neighboring vertex groups. In order to alleviate the
potential inconsistency along the boundary, we extend the range of each vertex group with 5-ring
neighbors (7 = 2 in the middle and bottom of Figure 6(I)), and drop the extended y-ring region after
the PCA decomposition. In this way, the PCA basis of each vertex group inherently encode the
features of its extended neighbors, which can enhance the boundary consistency, see Figure 6(III).
Bitstream encoding. As the final step of the compression pipeline, we choose the well-known fast
lossless compression method ZLib [10], which combines the Huffman coding [19] and the LZ77
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M

Fig. 6. Boundary consistency by overlapping the neighboring vertex groups. (I) Top: an example of segmenta-
tion boundary, Middle and Bottom: merge 2-ring neighbor vertices for each vertex group before sending to
the encoder. (I1) and (l11) are the decoded 3D model without/with boundary consistency, respectively.

compression [57] that both can be approximated to the limits of information entropy [55]. More
specifically, we first concatenate the PCA components into a bitstream XCp. Then, we apply ZLib
for the encoding, i.e.,

Xps = ZLib(XCpy). (8)

® Decoder. We first apply the inverse of the ZLib method to uncompress for the PCA components,
ie.,

chs = unZLib(sz), (9)

where unZLib is the corresponding decoder of the compression method ZLib. Then, with the
uncompressed score matrix and the coefficient matrix, we can approximate each of the spatio-
temporal segment by using the Eq. 6 and Eq. 7. Finally, we restore the original animation by
concatenating the spatio-temporal segments in order.

4.5 Sequential Processing

As discussed in Section 3, our spatio-temporal segmentation scheme generates four possible
animation blocks that are further sent to the encoder for compression (see Figure 2), which leads to
four types of the sequential processing to the successive mesh sequence:

(@) |z| = y™*. This indicates none of distinct behaviors has been detected at the initial temporal
cut step (Section 4.1). In this case, the animation block [VL, V"™ will be directly sent to the
encoder. Moreover, we need to re-compute a spatio-temporal segmentation for the successive mesh
sequence.

M) |r] < y™* and |az| < y™@*. This indicates the vertex clustering has been conducted and
a temporal segmentation boundary has been detected at V**. In this case, each vertex group
of the animation block will be sent to the encoder, separately. Moreover, we will re-compute a
spatio-temporal segmentation for the successive mesh sequence.
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Fig. 7. The spatio-temporal segmentation results of the experimental data: (1) ‘March’, (I1) ‘Cloth’, (11I) ‘Horse’,
(1V) ‘Jump’, (V) ‘Flag’ and (VI) ‘Handstand’. The maximal possible number of the vertex groups w = 4 for all
the data. Note that colors only indicate the intra-segment (not inter-segment) disparities. See more results in
the supplemental materials.

(I) |z] < y™™* and |az| = y™4*. This indicates the vertex clustering has been conducted and a
temporal segmentation boundary has not been detected within the range [V!, V¥"“*] In this case,
each vertex group of the animation block will be sent to the encoder, separately. Moreover, we will
only need to re-compute the temporal segmentation for the successive mesh sequence.

(IV) Otherwise, we can directly reuse the obtained (previous) vertex grouping results, compute
the temporal segmentation, and then perform the PCA-based compression for each vertex group. If
the new boundary |az| < y™*, we will need to re-compute a spatio-temporal segmentation for
the successive mesh sequence; otherwise (i.e., |at| = y™*), it will again become the case (IV) for
the successive mesh sequence.

5 EXPERIMENT RESULTS AND DISCUSSION

In this section, we first present the experimental data and the used evaluation metrics in Section 5.1.
Then, we describe our experimental results in Section 5.2. In addition, we conducted comparative
studies in Section 5.3. Both our approach and the comparative approaches were implemented with
Matlab and all the experiments were performed on the same computer with Intel Core 15-6500
CPU @3.2GHz (4 cores) with 12G RAM. More results can be found in the supplemental demo video.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.



oNOYTULT D WN =

Transactions on Multimedia Computing, Communications, and Applications Page 52 of 71

111:14 Luo et al.
Table 1. The results and performances by our model with different configurations of parameters: € and y ‘"
for the Initial Temporal Cut (Section 4.1), y™%* for the Temporal Segmentation (Section 4.3) and w for the
vertex clustering (Section 4.2). s and s, are the timings in seconds (unit) of the single-thread and paralleled
implementations, respectively, % denotes the percentage of the time savings for each data, i.e., 100 - (s — sp)/s.
The last column sz shows the decoding timings.

Animations Parameters Rate Distortion(%) Timing

(V/F) e ymit ymax bpvf STED KGError s Sp % Sd
March 5 15 50 4 253 5.83 6.01 75.69 70.08 7.41 0.29
(10002/250) 5 20 50 4 244 5.28 5.98 93.72 88.2 5.89 0.26
5 20 100 4 244 5.31 5.91 104.79  98.08 6.40 0.26
5 20 50 8§ 2.38 5.44 6.15 97.15 92.79 449 0.28
Jump 5 15 50 4 4.00 6.22 7.07 63.24 61.39 293 0.17
(10002/150) 5 20 50 4 394 9.39 6.58 100.33  98.40 1.92  0.18
5 20 100 4 3.94 9.39 6.58 101.17  96.95 417 0.19
5 20 50 8 3.94 9.39 6.58 103.45 100.92 245 0.18
Handstand 5 15 50 4 238 9.00 5.20 51.25 48.02 6.30 0.20
(10002/175) 5 20 50 4 231 7.63 5.09 69.29 66.51 3.89 0.18
5 20 100 4 2.14 8.07 5.22 70.06 66.61 492 0.16
5 20 50 8 225 8.05 5.12 71.99 68.92 426 0.18
Horse 3 9 20 4 793 4.38 4.88 20.29 19.05 6.11 0.06
(8431/49) 3 12 20 4 6.42 4.61 3.72 17.00 16.21 4.65 0.05
3 12 30 4 6.42 4.61 3.72 17.09 16.07 597 0.05
3 12 20 8§ 731 4.52 4.21 22.43 21.55 3.92  0.06
Flag 10 30 100 4 0.87 2.28 7.89 120.48 104.95 12.89 0.62
(2750/1001) 10 40 100 4 0.79 2.63 7.89 195.13 178.64 8.45 0.61
10 40 150 4 0.73 2.71 7.94 210.52 19256 853 0.61
10 40 100 8 0.79 2.67 7.87 198.25 180.23 9.09  0.69
Cloth 10 30 100 4 0.54 0.89 3.01 14.49 13.19 8.97 0.03
(2750/200) 10 40 100 4 0.63 0.84 1.95 31.64 29.13 7.93 0.03
10 40 150 4 0.63 0.86 1.97 33.98 28.20 17.01 0.04
10 40 100 8 0.63 0.90 1.94 32.40 28.95 10.47 0.03

5.1 Experimental Setup

Table 1 shows the details of our experimental data. Among them, ‘March’, ‘ Jump’ and ‘Handstand’
were created by driving a 3D template with multi-view video [49]. ‘Horse’ was generated by
deformation transfer [42]. ‘Flag’ and ‘Cloth’ are dynamic open-edge meshes [8]. We applied the
following metrics for quantitative analysis:

Bits per vertex per frame (bpvf). Similar to [7, 41], we also used bpvf to measure the performance
of compression approaches. Note that we assume the vertex coordinates are originally stored as
single-precision floating numbers, i.e., 8bits/Bytex4Bytes = 32. Thus, after the PCA decomposition
in Section 4.4, we can calculate the quantization of the basis and coefficients as follows:

Q=32 Z IV oy | X ki + K} x lazi] + lazil), (10)

Lj
where k]’: denotes the number of the principal dimensions of the j-th vertex group within the i-th
temporal segment. Finally, after the encoding of the PCA decomposition components, we can
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estimate the bpvf of our approach as follows:

_ |sz| 0
bPof = e VX E’ (11)

where |XCp| and | Xps| denotes the quantities of the bitstream before and after applying the lossless
compressor ZLib, respectively.

Reconstruction errors. After compression, we can reconstruct the animation with the decoder
described in Section 4.4. In order to measure the difference between the reconstructed animation
and the original animation, we use two well-known metrics, namely, the Spatiotemporal edge
difference (STED) error proposed by Vasa et al. [48] and the KGError proposed by Karni et al. [21]. In
specific, the STED error can be defined as the weighted spatial and temporal errors as follows [48]:

STED =+/STED(d_)? + ¢? - STED(w_, dt_)?, (12)

where d_ denotes the local spatial range, c_ is a weighting parameter, w_ is the local temporal
range and dt_ is the temporal distance value. We apply the default parameter settings based on the
studies by Vasa et al. in [48]. Moreover, the KGError can be defined as follows [21]:
~_lIF-Flly

IF - E(F)llf”

KGError = 100 (13)
where || - || denotes the Frobenius norm, F and F are the original animation coordinates and the
reconstructed animation coordinates (3V X F), respectively. Furthermore, E(F) denotes the averaged
centers of all the frames, and thus F — E(F) denotes the center-subtracted animation.

5.2 Experimental Results

In this part, we present and discuss both the segmentation results and the compression results by
our approach.

Spatio-temporal segmentation results. Figure 7 shows some samples of the spatio-temporal
segmentation results of our experimental data (more results can be found in our supplemental
materials). As can be seen in this figure, given the maximal number of spatial segments (groups)
® = 4, our approach is able to automatically determine the optimal number of vertex groups (i.e.,
exploiting the spatial redundancy) for different dynamic behaviors (i.e., exploiting the temporal
redundancy) for all the data. For example:

o The segmentation results of the ‘March’, the ‘Jump’, and the ‘Handstand’ data are represen-
tatives of the local dynamic behaviors of different mesh regions. As can be clearly seen in
Figure 7(VI), our segmentation approach can not only determine the number of segments auto-
matically, but also divide the mesh based on the local movements and group the disconnected
regions with similar behaviors.

The ‘Cloth’ animation in Figure 7(II) is firstly segmented into 4 different highly deformed
regions while dropping onto the table. Then, our approach generates 3 segments, i.e., 2
waving corner regions with deformed wrinkles and 1 relatively static large region.

From the segmentation results of the ‘Horse’ animation in Figure 7(IIl), we can observe the 4
legs are classified into the same group when moving towards the same direction; otherwise,
they form different spatial groups. Similarly, the ‘tail’ is grouped with the ‘trunk’ region if
the absence of distinct movements, or it is divided into two groups if bended.

Parallel computing. As described in Section 4.3, the temporal segmentation is applied on
each vertex group independently, which can be accelerated through parallel computing. In our
experiments, we implemented the temporal segmentation step with parallel computing on 4 cells.
The computational time is shown in the column ‘s,” in Table 1. Compared to the single thread
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implementation (column ‘s’ in Table 1), the average efficiency has been improved by 9.94%, while it
can be improved even up to 17.01% for the ‘Cloth’ data. It is noteworthy that the decompression
time ‘s4’ is less than 0.3s for all the experimental data. This is important for those applications that
require a fast decompression such as bandwidth-limited animation rendering and display.
Compression results. Table 1 shows the different configurations of our spatio-temporal seg-
mentation model for the compressions of the experimental data (¢ = 0.99). For each of the data
with different parameters, we highlight the best ‘Rate’, ‘STED’ ‘KGError’, and ‘“Timing’ in bold fonts.
We present and discuss the compression results in reference to the following different parameters:

e ¢. This parameter is a smoothing parameter for the initial temporal cut (Section 4.1). This
parameter can be empirically chosen based on the target frame rate and the mesh complexity.

e yi"’ 1f we increase y"! for the initial temporal cut, the computing time may be significantly
increased since the time complexity of the initial temporal cut (Section 4.1) is O(|y*|?). On
the other hand, its influence on the distortion is limited. Moreover, bpv f tends to decrease
for most of the experimental data (except the ‘Cloth’ data).

e y™4* As can be seen in Table 1, the change of y™%* does not significantly affect any of
bpuf, distortion, and the computing time. This is because most of the temporal segmentation
boundaries are found before reaching y™*.

e o. By increasing w from 4 to 8, we do not observe the significant changes of the evaluation
metrics. This is because our 2-stage vertex clustering can automatically converge to the
optimal number of vertex groups. Moreover, the multi-thread implementation of our approach
significantly improves the computational efficiency (see the “Timing’ column in Table 1).
Therefore, in general w tends to be set to a small number. In fact, based on the previous
studies [21, 31], w cannot be a big number because the bit rate will increase sharply due
to the additional groups’ basis. In our experiments, we empirically set w = 4 because our
experimental computer has a CPU of 4 cores.

5.3 Comparative Studies

In this section, we first adapt the existing compression methods for the temporal block-wise
compression and compare with our adaptive spatio-temporal segmentation based compression
method in Section 5.3.1. Especially, we show the improvements of our method by comparing to the
previous method presented in [32]. Then, in Section 5.3.2, we further demonstrate the effectiveness
of our method by comparing to the recent advanced dynamic mesh compression methods based
on the measurement metric STED [48]. It worth to mention that although the method in [46] also
compresses an animation both spatially and temporally by using a Laplacian-based spatio-temporal
predictor, they require the animation to be given in advance to compute a averaged pose.

5.3.1 Comparisons with the Adapted Methods. We compared our method with the method in [38]
(called as and the ‘Original Simple’ method in this writing), which is a non-sequential processing
compression method. Additionally, we adopted the idea in [25] which cuts an animation into
temporal blocks of the same size. Then, we can simulate the sequential processing of the existing
compression methods, including the ‘Original Soft’ in [21] and the PCA-based methods, to compress
each block in order. We call the adapted approaches as the ‘Adapted Soft’ and the ‘Adapted PCA’.
In order to make fair comparisons, the block size of the adapted methods is approximately set to
the average of |az| for each of the experimental data. Note that we have not included an ‘Adapted
Simple’ method, which can be obtained by similarly adapting the ‘Original Simple’ method, into
the comparison due to the extremely high computational cost of the ‘Original Simple’ method [38],
which is unsuitable for sequential processing. More importantly, with the additional step on the
lossless compression of the PCA bases and coefficients in Section 4.4, our method (red solid line in
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Figure 8) has been significantly improved, compared to our previous method in [32] (red dotted
line in Figure 8).

8r -e-Luo et al.[32]
B Adapted Soft

. —6-Adapted PCA
gﬁ i —v—Karni et al.[21]
o L —A— Sattler et al.[38]
Q ——Our method
M4

oL

— - i
0 I o ' o

1 2 3 prf 4 5 6

Fig. 8. Comparisons on the ‘Cloth’ animation between our model and the previous model in 13D’19 [32] with
the same specifications (o = 4,y = 40,y?°! = 100), and the ‘Adapted Soft’ (block size = 100), the ‘Adapted
PCA’ (block size = 100), and the ‘Original Soft’.

Rate-Distortion curves (KG Error versus bpvf). Figure 8 shows the comparisons of an ex-
ample between our method and the other methods. As can be seen from this figure, our method
shows a significantly better performance than the adapted methods. That is, with the same bpv f in
the range of [2, 6.5], our method can always reconstruct the ‘Cloth’ animation with a much smaller
KG Error. Note that the ‘Original Soft’ method has a better performance when bpvf < 2. This is
because the ‘Cloth’ data contains a large portion of nearly static poses, which means the animation
has significant temporal redundancies. Thus, the non-sequential precessing method (‘Original
Soft’) takes this advantage by treating the entire animation. However, our method runs much more
efficiently: on average, 14.5 seconds consumed by our method, 32.5 seconds consumed by the
‘Original Soft’ method, and 4421.9 seconds consumed by the ‘Original Simple’ method. Moreover,
our method also provides a fine option for users who prefer high qualities after compression with
slightly more storage cost, e.g., bpv f > 2.

5.3.2  Comparisons with the recent advanced methods. We also compared our method with several
state-of-the-art animation compression methods, including the temporal block-wise method by
Lalo et al. [25], the trajectory-prediction based methods by Vasa et al. [46, 47], and the linear
prediction based method by Karni et al. [21]. For the purpose of a fair comparison, we adapted
the trajectory-prediction based method and the linear prediction based method to the block-wise
compression with the block size of y™%*. The comparative results are described as follows.

Rate-Distortion curves (STED versus bpvf). Figure 9 show the distortion comparisons of an
example between our method and the other methods, summarized below.

e Compared to the block-wise method [25], our adaptive block-wise model shows better
performances in Figures 9. This is because our model can automatically compute the adaptive
block size and the number of vertex groups by exploiting both the temporal and the spatial
redundancies.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.



oNOYTULT D WN =

Transactions on Multimedia Computing, Communications, and Applications Page 56 of 71

111:18 Luo et al.
10 X107
8,
6,
a)
[N
|_
(Vg
4,
- —e— Our method
-v— Lalos et al.[25]
2r ——\/a3a et al.[47]
. ——\V/asa et al.[46]
0 L L o
0 2 4 6 12 14 16 18

° bpvf10

Fig. 9. The STED error comparisons on the ‘Cloth’ animation between our method (w = 4, y '™ = 40, y™%* =
80) and the existing methods with the block size of 80.

e Compared to the trajectory-prediction based methods in [46, 47], our model shows a better
performance in Figure 9. This is because our compression model utilizes the adaptive spatio-
temporal segmentation, which automatically preserves the STED within the spatio-temporal
segments.

e Regarding the computational time, our model took 46 seconds, while the trajectory-prediction
based methods in [46, 47] took several minutes. Note that we have not included the time
comparison with the method in [21] and [38], because they took hours of computation and
returned higher reconstruction errors.

Reconstruction errors. Figure 10 shows the heat-map visualizations of the reconstruction
errors using our model and the other methods. Note that the heat-map is colored based on the per-
vertex Euclidean distances. Overall, using our compression model, we can obtain lower distortions
with a smaller bpvf. We describe the comparative results in details as follows:

o Comparisons with the temporal block-wise method. From the comparison between our method
and the temporal block-wise method [25], the heat-map shows much lower per-vertex
distortions on the fast-moving regions, e.g., swing hands of the ‘March’ data and the stretching
legs/tails of the ‘Horse’ data. This is because our model exploits the spatial redundancy with
a spatial segmentation within each temporal block, while the temporal block-wise method
directly compresses the entire block.
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e Comparisons with the linear prediction based methods. The linear prediction method in [21]
first decomposes the animation data with PCA, and then achieves compression by applying
the linear prediction analysis to the decomposed components. Compared to [25], [21] can
avoid high distortions on the fast-moving regions. However, this method can cause distortions
in the relatively rigid regions due to the information loss by the linear predictors.

e Comparisons with the trajectory-prediction based methods. As can be seen from the ‘Cloth’
data in the right of Figure 10, the vertex distortions even occur on the rigid table-top surface
of the mesh using the trajectory-prediction based compression methods [46, 47], as they do
not explicitly constrain the spatial affinities, i.e., the spatial segmentation.

e Our method. Based on the above findings, our method avoids local extreme reconstruction
errors using the specially-designed spatio-temporal segmentation to exploit both the spatial
and the temporal redundancies. This advantage becomes more significant when periodically
dynamic behaviors either spatially or temporally occur in the animation. In addition, our
method runs much more efficiently, compared to the trajectory-prediction based compression
methods [46, 47].

‘March® ‘Horse® ‘Cloth

' bpvf=3.84 | ! bpvf=3.87 [Our model]
i [Lvbm17] | [vso09]
bpvf=3.85 !

bpvf=9.31

»

bpvf=5.34
[KG04]

AR m

bpvf=3.98

bpvf=9.31

[VMHB14]

bpvf=9.31

Fig. 10. The reconstruction errors of the compression by using our approach, Lalo et al’s method in [25],
Karni et al’s method in [21], V43a et al’s method in [47] and in [46]. The colorbar indicates the reconstruction
errors from low (blue) to high (red).

5.4 Limitations

The main limitation of our current model is the configuration of the parameters needed for the spatio-
temporal segmentation scheme. To gain investigate this issue, we have conducted experimental
analysis on the parameters in Section 5.2. Based on our analysis, the tuning of the parameters only
has limited influence on the compression results. Using the ‘Horse’ data in Table 1 as an example,
the compression does not change when we modify y™** from 20 to 30. This is because our method
often detects a temporal segmentation boundary before reaching y™%*, case (II) of Figure 2 in
Section 4.5.

Another limitation of our model is the computational cost. Although we have implemented some
parts of our spatio-temporal segmentation model through parallel computing and its computational
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time is superior to those of the existing non-sequential processing based compression methods, it
requires further design for a frame-by-frame segmentation update scheme towards the real-time
compression of 3D mesh animations in the future.

6 CONCLUSION

In this paper, we have presented a new 3D mesh animation compression model based on spatio-
temporal segmentation. Our segmentation scheme utilizes a two-rounds temporal segmentation
and a two-stages vertex clustering, which are greedy processes to exploit the temporal and spatial
redundancies, respectively. The main advantage of our scheme is the automatic determination
of the optimal number of temporal segments and the optimal number of vertex groups based on
global motions and the local movements of input 3D mesh animations. That is, our segmentation
methods can automatically optimize the temporal redundancies and the spatial redundancy for
compression. Our experiments on various animations demonstrated the effectiveness of our com-
pression scheme. In the future, we would like to extend our spatio-temporal segmentation scheme
to handle various motion representations, which can be potentially used for various motion-based
animation searching, motion editing, and so on.
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ABSTRACT

With the recent advances of data acquisition techniques, the com-
pression of various 3D mesh animation data has become an im-
portant topic in computer graphics community. In this paper, we
present a new spatio-temporal segmentation-based approach for
the compression of 3D mesh animations. Given an input mesh se-
quence, we first compute an initial temporal cut to obtain a small
subsequence by detecting the temporal boundary of dynamic behav-
ior. Then, we apply a two-stage vertex clustering on the resulting
subsequence to classify the vertices into groups with optimal intra-
affinities. After that, we design a temporal segmentation step based
on the variations of the principle components within each vertex
group prior to performing a PCA-based compression. Our approach
can adaptively determine the temporal and spatial segmentation
boundaries in order to exploit both temporal and spatial redun-
dancies. We have conducted many experiments on different types
of 3D mesh animations with various segmentation configurations.
Our comparative studies show the competitive performance of our
approach for the compression of 3D mesh animations.
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1 INTRODUCTION

The key information of a 3D mesh animation is its dynamic behav-
ior, which drives the deformations of different mesh surface areas.
As reported in existing literature, we can achieve a better perfor-
mance on the compression of 3D mesh animations with repetitive
motions or rigid mesh segments, which contain significant redun-
dancies either temporally or spatially [Lalos et al. 2017; Stefanoski
and Ostermann 2010; Vasa et al. 2014]. Therefore, it is important
to exploit the dynamic behaviors based on both spatial and tempo-
ral segmentations within a 3D mesh animation for effective data
compression. However, due to the high complexity and the large
data size, it remains a challenge to jointly explore the spatial and
temporal segmentations to further improve the performance of 3D
mesh animation compression.

In this paper, we propose an adaptive spatio-temporal segmen-
tation based model for the compression of 3D mesh animations.
Specifically, we first introduce a temporal segmentation scheme
that explores the temporal redundancy by automatically determin-
ing the optimal temporal boundaries. Then, we also introduce a
novel two-stages vertex clustering approach to explore the spatial
redundancy by automatically determining the number of the ver-
tex groups with optimal intra-affinities. As an application of the
above adaptive spatio-temporal segmentation model, we develop
a full scheme for the compression of 3D mesh animations (Figure
1). Through many experiments, we show the effectiveness and effi-
ciency of our approach, compared to the state of the art 3D mesh
animation compression algorithms.

The contributions of this work can be summarized as follows:

e an adaptive spatio-temporal segmentation approach which
explores both the spatial and temporal redundancies for 3D
mesh animations; and
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e a compression model for 3D mesh animations by coupling
the novel adaptive spatio-temporal segmentation and the
compression of 3D mesh animations.

The remainder of this paper is organized as follows. We first
review previous and related works on the compression of 3D mesh
animations in Section 2. In Section 3, we briefly give the overview
of our compression scheme. Then, we present the details of our
spatio-temporal segmentation model and its application to the com-
pression of 3D mesh animations in Section 4. The experimental
results by our model are shown in Section 5. Finally, we conclude
this work in Section 6.

2 RELATED WORK

The compression of 3D mesh animation data has been a persistent
research topic in the past several decades [Maglo et al. 2015]. Among
the existing methods, a large portion of the methods take a ma-
trix form of the 3D mesh animation, on which many of classical
data compression methods and algorithms can be applied, includ-
ing Principal Component Analysis (PCA) [Alexa and Miiller 2000;
Hou et al. 2017; Liu et al. 2012], linear prediction encoders [Karni
and Gotsman 2004; Stefanoski et al. 2007; Stefanoski and Oster-
mann 2010; Yang et al. 2002], wavelet decomposition [Guskov and
Khodakovsky 2004; Payan and Antonini 2007], and the Moving
Picture Experts Group (MPEG) framework [Mamou et al. 2008].
PCA is a classical method that can decompose a large matrix as
the product of two much smaller matrices, with minimal informa-
tion loss. Following the work of [Alexa and Miller 2000], Lee et
al. [Lee et al. 2007] apply PCA to 3D mesh animation data after
removing its rigid transformations. Later, researchers have used
the linear prediction theory to further encode the resulting coeffi-
cients from PCA [Karni and Gotsman 2004; Vasa and Skala 2009;
Vésa and Brunnett 2013,?]. Similarly, researchers have proposed
a Laplacian-based spatio-temporal predictor [Vasa et al. 2014] or
curvature-and-torsion based analysis [Yang et al. 2018] to encode
the vertex trajectories for dynamic meshes. However, they assume
an entire sequence as the given input, and do not explicitly exploit
the dynamic behaviors enclosed in the input animation. The key
information of a 3D mesh animation is its enclosed dynamic be-
havior; therefore, it is important to exploit the dynamic behavior
coherence in 3D mesh animations for effective compression, using
either spatial segmentation or temporal segmentation methods.

Spatial segmentation based compression: The key of the spatial
segmentation of a 3D mesh animation is to understand its semantic
behaviors. Many previous methods have been proposed to com-
pute the spatial segmentations for 3D mesh animations, which can
generate different spatial segmentation schemes for animations
with different motions [A Vasilakis and Fudos 2014; de Aguiar et al.
2008; James and Twigg 2005; Kavan et al. 2010; Le and Deng 2014;
Lee et al. 2006; Wuhrer and Brunton 2010]. Hijiri et al. [Hijiri et al.
2000] separately compress the vertices of each object with the same
movements to obtain an overall optimal compression rate. In order
to adapt spatial segmentation for compression, Sattler et al. [Sattler
etal. 2005] proposed an iterative clustered PCA method to group the
vertex trajectories that share similar Principal Component (PC) coef-
ficients and then further compress each cluster separately. Its main
limitation is its heavy computational cost. Similarly, Ramanathan et
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al. [Ramanathan et al. 2008] compute the optimal vertex clustering
for the optimal compression ratio. However, all the above methods
assume the entire animation has been given at the beginning.

Temporal segmentation based compression: The objective of tem-
poral segmentation is mainly to chop a 3D mesh animation into
sub-sequences, each of which represents a different dynamic behav-
ior. Temporal segmentation has been exploited for the compression
of motion capture data [Gong et al. 2012; Gu et al. 2009; Sattler et al.
2005; Zhu et al. 2012], but the efficiencies of these methods for 3D
mesh animation compression may be significantly decreased since
3D mesh surfaces typically have much more denser vertices and ad-
ditional topology than motion capture data [Luo et al. 2017]. Given
a mesh sequence, Luo et al. [Luo et al. 2013] group the meshes with
similar poses and apply PCA to compress each group to achieve
the optimal compression ratio. Recently, Lalo et al. [Lalos et al.
2017] proposed an adaptive Singular Value Decomposition (SVD)
coeflicient method for 3D mesh animation compression. They first
divide a mesh sequence into temporal blocks of the same length
and treat the first block with SVD. Then, the following blocks are
treated with the adaptive bases from the previous block without
solving the full SVD decomposition for each block, which reduces
the compute time.

In summary, spatial and temporal segmentations can help to re-
veal the spatial and temporal redundancies within 3D mesh anima-
tions, which benefits for the development of effective compression
algorithms. The new compression scheme for 3D mesh animations,
presented in this work alternately exploits both spatial and temporal
redundancies.

3 SCHEME OVERVIEW

In general 3D mesh animations mainly have two different forms,
namely, time-varying meshes and deforming meshes. A time-varying
mesh may have different numbers of vertices and different topologi-
cal connectivities at different frames, whereas a deforming mesh has
a fixed topology across frames. Note that we can always compute
the inter-frame vertex correspondences to convert a time-varying
mesh into a deforming mesh [Tevs et al. 2012]. For the sake of
simplicity, we focus on the deforming mesh data in this work.

Then, we define the trigger conditions for the two important
steps in our method. (1) Initial Temporal Cut: given the maximal
length y ™ if any dynamic behavior has been detected in the mesh
sequence (with no more than y™ frames) (see Section 4.1), and
(2) Actual Temporal Segmentation: given the maximal length y@¢?
if any dynamic behavior has been detected in any of the vertex
groups (see Section 4.2 and 4.3).

We briefly describe the pipeline of our segmentation scheme as
follows. The algorithmic description is also shown in Figure 1.

(1) We first conduct an initial temporal cut to produce a sub-
sequence S with the maximal possible length of yi™, see
Section 4.1.

(2) If no distinct behavior can be detected in S, i.e., the boundary
frame b = y™!, the subsequence S will be directly sent to
the compressor (the case (I) in Section 4.5), see Section 4.4.

(3) Otherwise (i.e., distinct behaviors are detected in S), we per-
form a 2-stages vertex clustering on S, see Section 4.2.
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Figure 1: Pipeline overview of our spatio-temporal segmen-
tation scheme for compression. (I, II, III, and IV) are the
4 types of the segmented animation blocks, which are ex-
plained in Section 4.5. Note that b denotes the length of an
initial/actual temporal segmentation, y!"'/ and y%¢! are the
maximal possible lengths for the Initial Temporal Cut and
the Temporal Segmentation (short for the Actual Temporal
Segmentation), respectively.

(4) Then, we continue to compute the temporal segmentation of
each vertex group (spatial segment) within next y%¢? frames,
by analyzing the dynamic behaviors, see Section 4.3.

(5) If we have detected distinct dynamic behaviors of any vertex
group before y%¢? is reached, the vertex trajectories of each
group up to the detected boundary frame are sent to the
compressor, separately. See Section 4.4. After the compres-
sion, we repeat the process from the step 1 (the case (II) in
Section 4.5).

(6) Otherwise (i.e., we have not detected a temporal segmen-
tation before reaching y%¢?), we also send the data of each
vertex cluster to the compressor, separately (the case (III)
in Section 4.5). See Section 4.4. Afterwards, we reuse the
previously obtained vertex clustering and continue the anal-
ysis of the temporal segmentation in the remaining mesh
frames. That is, we repeat the process from the step 4 for the
remaining mesh frames (The case (IV) in Section 4.5).
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4 SPATIO-TEMPORAL SEGMENTATION FOR
COMPRESSION

We first describe our spatio-temporal segmentation model that
consists of the initial temporal cut (Section 4.1), vertex clustering
(Section 4.2), and temporal segmentation (Section 4.3). Then, we
apply the spatio-temporal segmentation model for the compression
of 3D mesh animations in Section 4.4. Finally, we discuss different
scenarios while processing a continuous mesh sequence as the
input in Section 4.5.

4.1 Initial Temporal Cut

Let us denote a mesh animation as ({V{ }, E), where E represents the

connectivities among the vertices, and V]l.c = (xlf R y{ R z{ ) represents
the 3D coordinates of the i-th vertex (i = 1, ..., V) at the f-th frame
(f =1,...,F). Here V is the total number of vertices, and F is the
total number of frames in the animation sequence.

Given a mesh sequence, the objective of the initial temporal
cut is to determine a boundary frame V!7!, so that the dynamic
behavior in [V!, VI71] is distinctive from that in [V71*1, V”m”]. To
this end, we can formulate the initial temporal cut as the following
optimization problem:

min I([V!, V2], [P v ), (1)
bel1, yinit]
where b is a to-be-solved frame index and I(-, -) computes the affinity
between two mesh subsequences.

Available techniques for computing I(-, -) can be classified into
two categories: 1) front-to-end, uni-directional boundary candidate
search, and 2) bi-directional boundary candidate search. Between
them, the bi-direction search method is more robust on detecting
the temporal cut between two successive dynamic behaviors [Barbic
et al. 2004; Gong et al. 2012]. Inspired by the kernelized Canonical
Correlation Analysis (kCCA) approach [Hofmann et al. 2008; Smola
et al. 2007], and its successful application to semantic temporal cut
for motion capture data [Gong et al. 2012], we formulate the initial
temporal cut to a Maximum-Mean Discrepancy problem as follows:

1 le}l K(Vbi:b,-+e, Vbj:bj+6)

IT:[*
min |- lT Z‘Tl‘ Z[TZlK(Vbi:bi+e,vbf:bf+e) e
N I I T
_y i itbi+te (bj:bj+e
+ |T2|z El,j K(V >,V )
where Ty is the subsequence [V1, .. ., Vbi]and Ty is the subsequence

init_

[voi+l vy
smooth kernels.
The kernel function in Eq. 2 is defined as follows:

K(vbrbite yhrbite) = exp(-pl|vbrbrte —ybrbite|2) ()

where A is the kernel parameter for K(-) [Van Vaerenbergh 2010].
Due to the symmetric property of the kCCA, i.e., K(A,B) = K(B, A),
we obtain a symmetric kCCA matrix for the animation block.

Finally, we can obtain a boundary frame VI7l for the initial
temporal cut by solving the objective function in (Eq. 2). Note that
|z| = b + € due to the usage of a smoothing window. Meanwhile,
we denote the detected initial temporal cut as 7. Figure 2 shows
one of the initial temporal cuts of the ‘March’ data, with y*if = 20
and € = 5.

€], and € is a pre-defined parameter to ensure
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max

kCCA matrix

min

MMD curve

b frame index

Figure 2: An example of the initial temporal segmentation
of the ‘March’ data, with the pairwise frame based kCCA ma-
trix (Eq. 3) in the top panel and the MMN curve (Eq. 2) in the
bottom panel. b is the detected boundary frame. The color-
bar indicates the small (blue) and large (red) kernels.

The complexity of the above bi-directional search for the initial
temporal cut is O(|y"!|?), which is less efficient than the uni-
directional methods with O(|y " |). However, in our context, we
compute the initial temporal cut within a short mesh sequence [1,
yi™#], which is a small cost on the computation and thus will not
cause notable delay to the overall compression framework. The
settings of y'™ for different experimental data are presented in
Table 1.

4.2 Vertex Clustering

In this section, we describe a vertex clustering (spatial segmen-
tation) algorithm based on a two-stages, bottom-up hierarchical
clustering algorithm to obtain optimal spatial affinities within seg-
ments.

4.2.1 Initial Vertex Clustering. After the initial temporal cut, 7 is
obtained; we then compute the vertex clustering based on the dy-
namic behaviors of different vertices. The pipeline of our approach
is shown in Figure 3 (LILIII).

In this initial vertex clustering stage, we first segment a dynamic
mesh based on rigidity with the following steps.

(1) Compute the MEC for all edge pairs. Similar to [Lee et al.
2006; Wuhrer and Brunton 2010], we compute the Maximal
Edge-length Change (MEC) within || frames for each vertex
pair, see Figure 3(I).

(2) Binary labeling of vertices. We fit the MEC of all the edges
as an exponential distribution epd, see the top of Figure 3(I).
Then, with the aid of the inverse cumulative distribution
function of epd, we can determine a user-specified percent
of the edges as the rigid edges (p = 20% in our experiments).
Thus, the vertices that are connected to the rigid edges are
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-

‘deformed’

‘rigid’

(1) (1) (1) (V)

Figure 3: Pipeline of the vertex clustering within an initial
temporal cut of the ‘March’ data: (I) Maximal Edge-length
Change (MEC) for all the edge pairs and their distributions,
(II) binary labeling of vertices, (III) the rigid clusters resulted
from the initial vertex clustering, and (IV) the rigid cluster
grouping results.

called the rigid vertices, and the remaining vertices are called
the deformed vertices in this work, see Figure 3(II).

Identify the rigid regions. Based on the above binary labeling
results, we merge the topologically connected rigid vertices
into rigid regions, which become initial rigid vertex clusters.
We also compute the center of each cluster as the average
vertex trajectory of each cluster.

Rigid clusters growing. Starting with the above rigid clusters,
we repeatedly merge the connected neighboring deformed
vertices into the rigid cluster with the most similar trajecto-
ries, and update the center of the corresponding rigid cluster.

—
[SY)
=

—~
N
=

The initial vertex clustering is completed till every deformed vertex
has been merged into a rigid cluster §* (i = 1,...,k, k is the total
number of the clusters), see Figure 3(III).

4.2.2 Rigid Cluster Grouping. In the second-stage vertex clustering,
we further classify the rigid clusters to w groups with high internal
affinities. In [Sattler et al. 2005], Sattler et al. proposed an iterative
clustered PCA based model for animation sequence compression.
Inspired by this work, we design the second-stage vertex clustering
by iteratively classifying and assigning each rigid cluster to the
group with the minimal reconstruction error until the grouping
remains unchanged. Since the iterative clustered-PCA is performed
on the initial vertex cluster, it works very efficiently, unlike the case
in [Sattler et al. 2005].

The reconstruction error of a rigid cluster 8/ is defined as follows:

167 = 87112 = 116 — (CLi1 + 8112, (@)

where 5~] is the reconstructed cluster using PCA, C[j] is the center
of each group (j = 1,...,w), and 3; is the reconstruction using
the PCA components (see Eq. 6). Note that we have C[j] in Eq. 4,
because PCA contains the centering (mean subtraction) of the input
data for the covariance matrix calculation.

Figure 3 illustrates the process of the rigid cluster grouping with
the ‘March’ data. As an example result in Figure 3(IV), the relatively
less moved rigid clusters, ‘head’, ‘chest’ and ‘right-arm’, are classi-
fied into the same group. Note that we obtain large vertex groups
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because the input mesh are smooth on the surface (see Table 1), un-
like the motion Capture data containing sparse vertex trajectories
that may lead to small groups. Moreover, the computational cost
for the initial vertex clustering presented above is relatively small
because both the number of clusters k and the number of groups w
are small.

4.3 Temporal Segmentation

After obtaining a set of the spatio-temporal segments L(3);(j =
1,...,w) for the initial temporal cut 7, we further introduce a tem-
poral segmentation step as follows:

e For each vertex group, we stop observing the number of
PCs once it is changed within the current sliding window. In
this way, we can obtain a Num-of-PCs curve for each vertex
group, see the bottom of Figure 4.

o To this end, similar to [Karni and Gotsman 2004], the tempo-
ral segmentation boundary is determined as the first frame
where any Num-of-PCs curve has changes, see the bottom-
right of Figure 4.

The complexity of the temporal segmentation is O(wy %¢?), where
y9¢t denotes the maximal length of temporal segments. Note that the
computational cost of the PCA decomposition increases exponen-
tially with the input data size. In order to balance the computational
cost and the effectiveness of PCA, we set an adaptive y¢* for each
of the input data, see Table 1.

. 1U US::B U‘ ‘U\ bu\-‘ ;)U\; \V{
/j‘_}‘\ /NN )\) )r;v /Sv,)‘\ )9'1\ | X '/
RER/RRER .
e V¢ SRR

pool T

P AR

' S 3 O——o—o——o/o frame index

Izl az| yoct

Figure 4: Illustration of the temporal segmentation. The top
row shows a sampled mesh sequence, with a bounding box
as a sliding window. The size of the window is dynamically
determined as the length of the initial temporal cut, i.e., |7|.
The bottom-left shows the vertex grouping of the initial tem-
poral segment, and the bottom-right contains the change of
the number of PCs for each vertex group in the sliding win-
dow. y9¢! is the maximal possible delay, and |a7| is the de-
tected temporal segmentation boundary.

Parallel computing. The temporal segmentation presented above
is designed for each vertex group (spatio-temporal segment), and
the vertex groups are independent of each other. Thus, we can
implement the temporal segmentation for each vertex group in
parallel. The computational time statistics in Table 1 show the
efficiency improvement through parallelization.
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4.4 Compression

After the above spatio-temporal segmentation, we apply PCA to
compress each segment with a pre-defined threshold on the infor-
mation persistence rate, u € [0 1], which is used to determine the
number of PCs to retain after the PCA decomposition, i.e.,

k [n|
Z <a,~)/Z(ai> >, )

where k < n, and {0;}(i = 1,...,n) are the eigen-values of the
data block in a descending order. Therefore, we can control the
compression quality by manipulating the value of p. In specific, by
increasing u, we have less information loss but more storage costs
after compression; and vice-versa.

e Encoder. For a spatio-temporal segment L(5)j., i.e., the j-th
spatial segment within the i-th actual temporal segment az;, we
denote its compression as follows:

e PEA i

aT; i i
VLQE Al X Bj, (6)

where Aj. is the score matrix of dimensions 3|VL( 8 | x kj’ B; is
J

the coefficient matrix of dimensions kJ’: X |arti|, and X denotes a

centered matrix of X by subtracting the mean vectors X, i.e.,
X=X-X. )

e Decoder. With the score matrix and the coefficient matrix, we
can approximate each of the spatio-temporal segments using Eq. 6
and Eq. 7. Then, we can reconstruct the original animation by
concatenating the spatio-temporal segments in order.

4.5 Sequential Processing

As discussed in Section 3, our spatio-temporal segmentation scheme
generates four possible animation blocks that are further sent to
the encoder for compression (see Figure 1), which leads to four
types of sequential processing to the successive mesh sequence:

(I) |z| = y*™*. This indicates none of distinct behaviors has been
detected at the initial temporal cut step (Section 4.1). In this case,
the animation block [V1, V”m”] will be directly sent to the encoder.
Moreover, we need to re-compute a spatio-temporal segmentation
for the successive mesh sequence.

() || <y and |ar| < y@°L. This indicates the vertex clus-
tering has been conducted and a temporal segmentation boundary
has been detected at V197! In this case, each vertex group of the an-
imation block will be sent to the encoder, separately. Moreover, we
will re-compute a spatio-temporal segmentation for the successive
mesh sequence.

(1) |z| < y'"* and |ar| = y°*. This indicates the vertex cluster-
ing has been conducted and a temporal segmentation boundary has
not been detected within the range [VI,VY{m]. In this case, each
vertex group of the animation block will be sent to the encoder,
separately. Moreover, we will only need to re-compute the temporal
segmentation for the successive mesh sequence.

(IV) Otherwise, we can directly reuse the existing (previous)
vertex grouping results, compute the temporal segmentation, and
then perform the PCA-based compression for each vertex group.
If the new boundary |ar| < y9¢!, we will need to re-compute a
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Table 1: The results and performances by our model with different configurations of parameters: € and y*i! for the Initial
Temporal Segmentation (Section 4.1), y%°! for the Actual Temporal Segmentation (Section 4.3) and o for the vertex clustering
(Section 4.2). s and s, are the timings in seconds (unit) of the single-thread and paralleled implementations, respectively, with
the last column showing the percentage of the time savings for each data.

Animations Vertex Frame Parameters Rate  KGError Timing
% F e yinit yact o ppof % s sp 100 (s —sp)/s

March 10002 250 5 15 50 4 817 5.90 112 101 9.82
5 20 50 4 7.80 5.90 126 120 4.76

5 20 100 4 780 5.84 146 135 7.53

5 20 50 8 7.64 6.08 133 123 7.52

Jump 10002 150 5 15 50 4 13.05 6.99 104 98 5.77
5 20 50 4 11.34 7.30 103 96 6.80

5 20 100 4 11.33 7.30 102 97 4.90

5 20 50 8 11.39 6.58 106 100 5.66

Handstand 10002 175 5 15 50 4 7.66 4.33 64 59 7.81
5 20 50 4 8.18 4.43 123 114 7.32

5 20 100 4 8.8 443 123 115 6.50

5 20 50 8 7.82 4.62 127 119 6.30

Horse 8431 49 3 9 20 4 26.09 4.70 31 29 6.45
3 12 20 4 20.56 3.66 25 25 0.00

3 12 30 4 20.56 3.66 25 25 0.00

3 12 20 8 23.88 4.10 32 32 0.00

Flag 2750 1001 10 30 100 4 2.60 7.82 88 67 23.86
10 40 100 4 249 7.87 152 123 19.08

10 40 150 4 2.32 7.92 164 132 19.51

10 40 100 8 2.49 7.85 150 126 16.00

Cloth 2750 201 10 30 100 4 1.89 2.65 12 10 16.67
10 40 100 4 198 1.93 26 21 19.23

10 40 150 4 199 1.94 31 20 35.48

10 40 100 8 1.99 1.88 25 20 20.00

spatio-temporal segmentation for the successive mesh sequence;
otherwise (i.e., |ar| = y9¢?), it will again become the case (IV) for
the successive mesh sequence.

5 EXPERIMENT RESULTS AND ANALYSIS

In this section, we first present the experimental data and the used
evaluation metrics in Section 5.1. Then, we describe our experimen-
tal results in Section 5.2. In addition, we conducted a comparative
study in Section 5.3. Both our model and the comparative methods
were implemented with Matlab and the experiments were per-
formed on an Intel Core i5-6500 CPU @3.2GHz (4 cells) with 12G
RAM. More results can be found in the supplemental materials.

5.1 Experimental Setup

Table 1 shows the details of our experimental data. Among them,
‘Marchk’, ‘Jump’ and ‘Handstand’ were created by driving a 3D
template with multi-view video [Vlasic et al. 2008]. ‘Horse” was
generated by deformation transfer [Sumner and Popovic 2004].
‘Flag’ and ‘Cloth’ are dynamic open-edge meshes [Cordier and
Magnenatthalmann 2005]. We applied the following two metrics
for quantitative analysis:

Bits per vertex per frame (bpvf). Similar to [Chen et al. 2017;
Stefanoski and Ostermann 2010], we also used bpvf to measure the

performance of compression methods. By assuming that the vertex
coordinates are recorded as single-precision floating numbers, the
bpvf of the original animation is 8bits/Byte X 4Bytes X3 = 96. Thus,
we can estimate the bpvf of our model as follows:

bpuf =96 - 2(3 . IVL(5);| X k} + kj’. X |ati| + |ati])/(3 -V X F).
i,j
(8
Reconstruction error. After compression, we can reconstruct the
animation with the decoder described in Section 4.4. In order to
measure the difference between the reconstructed animation and
the original animation, we use the well-known metric KGError,
proposed by Karni et al. in [Karni and Gotsman 2004]:

IF - F|
100 —— I ©)
IF - EF)llf
where || - || denotes the Frobenius norm, F and T are the original

animation coordinates and the reconstructed animation coordinates
of size 3V X F, respectively. Moreover, E(F) are the averaged centers
of each frame, and thus F — E(F) indicates the centering of the
original animation.
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Moreover, bpvf tends to decrease for most of the experimental
data (except the ‘Handstand’ data).

e y9°T As can be seen in Table 1, the change of y?“? does not
significantly affect any of bpv f, KGError, and the computing
time. This is because most of the actual temporal segmentation
boundaries are found before reaching y¢?.

e . By increasing w from 4 to 8, we do not observe the significant
changes of the evaluation metrics. This is because our 2-stages
spatial segmentation can automatically converge to the optimal
number of spatial segments. Moreover, the multi-thread imple-
mentation of our approach significantly improves the computa-
tional efficiency (see the “Timing’ column in Table 1). Therefore,
in general w tends to be set to a small number. In fact, based on
the previous studies [Karni and Gotsman 2004; Luo et al. 2013],
cannot be a big number because the bit rate will increase sharply
due to the additional groups’ basis. In our experiments, we empir-
ically set @ = 4 because our experimental computer has a CPU

5.3 Comparative Studies

We also compared our method with the method in [Sattler et al.
2005] (called as and the ‘Original Simple’ method in this writing),
which is a non-sequential processing compression method. Addi-
tionally, we adopted the idea in [Lalos et al. 2017] which cuts an
animation into temporal blocks of the same size. Then, we can simu-
late the sequential processing of the existing compression methods,
including the ‘Original Soft’ in [Karni and Gotsman 2004] and the
PCA-based methods, to compress each block in order. We call the
adapted approaches as the ‘Adapted Soft’ and the ‘Adapted PCA’.
In order to make fair comparisons, the block size of the adapted
methods is approximately set to the average of |az| for each of the
experimental data. Note that we have not included an ‘Adapted
Simple’ method, which can be obtained by similarly adapting the
‘Original Simple’ method, into the comparison due to the extremely
high computational cost of the ‘Original Simple’ method [Sattler
et al. 2005], which is unsuitable for sequential processing.

KG Error versus bpvf. Figure 6 shows the comparisons of an ex-
ample between our method and the other methods. As can be seen
from this figure, our method shows a significantly better perfor-
mance than the adapted methods. That is, with the same bpvf
in the range of [2, 6.5], our method can always reconstruct the
‘Cloth’ animation with a much smaller KG Error. Note that the
‘Original Soft’ method has a better performance when bpvf < 2.
This is because the ‘Cloth’ data contains a large portion of nearly
static poses, which means the animation has significant temporal
redundancies. Thus, the non-sequential precessing method (‘Orig-
inal Soft’) takes this advantage by treating the entire animation.
However, our method runs much more efficiently: on average, 14.5
seconds consumed by our method, 32.5 seconds consumed by the
‘Original Soft’ method, and 4421.9 seconds consumed by the ‘Orig-
inal Simple’ method. Moreover, our method also provides a fine
option for users who prefer high qualities after compression with
slightly more storage cost, e.g., bpvf > 2.

Reconstruction errors. Figure 7 shows the heat-map visualizations
of the reconstruction errors by our method and the other methods.

Page 67 of 71 Transactions on Multimedia Computing, Communications, and Applications
1
2 3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation
3
4 5.2 Experimental Results
3 We present and discuss both the segmentation results and the com-
? pression results in this section.
8 Spatio-temporal segmentation results. Figure 5 shows some sam-
9 ples of the spatio-temporal segmentation results of our experimen-
10 tal data (more results can be found in our supplemental materials).
11 As can be seen in this figure, given the maximal number of spatial
12 segments (groups) @ = 4, our model is able to automatically de-
termine the optimal number of vertex groups (i.e., exploiting the
13 spatial redundancy) for different dynamic behaviors (i.e., exploiting
:‘S" the temporal redundancy) for all the data. For example:
16 o The segmentation results of the ‘March’ and the ‘Jump’ data are
17 representatives Ef the local dynamic behaviors of differenctl rlnesh
regions. As can be seen in Figure 5, our segmentation model can
18 not only automatically determine the number of segments, but
19 also divide the mesh based on the local movements and group
20 the disconnected regions with similar behaviors. of 4 cells.
21 e The ‘Cloth’ animation in Figure 5(II) is firstly segmented into 4
22 different highly deformed regions while dropping onto the table.
23 Then, our approach generated 3 segments, i.e., 2 waving corner
24 regions with deformed wrinkles and 1 relatively static region.
25 e From the segmentation results of the ‘Horse’ animation in Fig-
26 ure 5(IIT), we can observe the 4 legs are classified into the same
57 group when moving towards the same direction; otherwise, they
28 form different spatial groups. Similarly, the ‘tail’ is grouped with
the ‘trunk’ region in the case of the absence of distinct move-
gg ments, or it is divided into two groups if bended.
31 Parallel computing. As presented in Section 4.3, the actual tempo-
32 ral segmentation is applied to each spatial segment independently,
33 which can be accelerated through parallel computing. In this exper-
34 iment, we implement the actual temporal segmentation step with
35 parallel computing on 4 cells. The computational time is shown
36 in the column ‘s, in Table 1. Compared to the single thread im-
37 plementation (column ‘s’ in Table 1), the average efficiency has
38 been improved by 10.71%, while it can be improved even up to
39 35.48% (‘Cloth’ data). It is noteworthy that the decompression time
40 is less than 0.3s for ‘March’, Jump’ and ‘Handstand’, less than 0.06s
for ‘Horse’ and ‘Cloth’, and less than 0.65s for ‘Flag’. This is im-
4 portant for applications that require a fast decompression such as
2; bandwidth-limited animation rendering and display.
44 Compression results. Table 1 shows the different configurations
45 of our spatio-temporal segmentation approach for the compression
46 of the experimental data (z = 0.99). For each of the data with
47 different parameters, we highlight the best ‘Rate’, ‘KGError’, and
48 ‘Timing’ in bold fonts. We present and discuss the compression
49 results in reference to the following parameters:
50 e ¢. It is a smoothing parameter for the initial temporal segmen-
51 tation (Section 4.1). This parameter can be empirically chosen
52 based on the target frame rate and the mesh complexity.
53 o yi" If we increase y'™!* for the initial temporal segmentation,
the computing time may be significantly increased since the time
>4 complexity of the initial temporal segmentation (Section 4.1) is
g 2 O(|y**|?). On the other hand, its influence on KGError is limited.
57
58
59
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Figure 5: The spatio-temporal segmentation results of the experimental data: (I)March’, (II)‘Cloth’, (III)Horse’, (IV) Jump’. Note
that colors only indicate the intra-segment (not inter-segment) disparities. See more results in the supplemental materials.

Our method
Adapted Soft
Adapted PCA
Original Soft
Original Simple

IR ERE

KG Error

Figure 6: Comparisons on the ‘Cloth’ animation between our
model (v = 4,y = 40,y%! = 100) and the ‘Adapted Soft’
(block size = 100), the ‘Adapted PCA’ (block size = 100), and
the ‘Original Soft’.

Overall, our method can achieve smaller reconstruction errors with
lower bpvfs for the experimental data. We describe the comparative
results in details as follows:

o Comparisons with the adapted methods. As can be seen in the
left and the middle of Figure 7, high reconstruction errors occur
randomly on the mesh using the ‘Adapted Soft’ method, as it is
based on the linear prediction coding, which does not explicitly
constrain the spatial affinities. For the ‘Adapted PCA’ method,
high reconstruction errors occur in the regions of the vertices
with rapid movements.

o Comparisons with the non-sequential processing methods. As can
be seen in the right of Figure 7, for the ‘Cloth’ data, the ‘Original
Soft’ method behaves with similar symptoms as the ‘Adapted
Soft’ method. The ‘Original Simple’ method returns high recon-
struction errors on the table-top region because this method
groups the vertex trajectories based on the entire mesh sequence,

which constrains neither the temporal affinities in the local tem-
poral subsequences nor the local spatial affinities. In addition,
our method is significantly faster than the ‘Original Soft’ method
and the ‘Original Simple’ method: our method consumed 17.78
seconds, the ‘Original Soft’ consumed 36.88 seconds, and the
‘Original Simple’ consumed 4622.36 seconds.

Our method. Based on the above findings, our method avoids
local extreme reconstruction errors using the specially-designed
spatio-temporal segmentation to exploit both the spatial and the
temporal redundancies. This advantage becomes more signif-
icant when periodically dynamic behaviors either spatially or
temporally occur in the animation. In addition, our method runs
much more efficiently, compared to the non-sequential methods
(i.e., ‘Original Soft’ and ‘Original Simple’).

5.4 Limitations

The main limitation of our current model is the configuration of the
parameters needed for the spatio-temporal segmentation scheme.
To investigate this issue, we have conducted experimental analysis
on the parameters in Section 5.2. Based on our analysis, the tuning
of the parameters only has limited influence on the compression
results. Using the ‘Horse’ data in Table 1 as an example, the com-
pression does not change when we modify y#“f from 20 to 30. This
is because our approach often detects a temporal segmentation
boundary before reaching y¢?, case (Il) in Section 4.5.

Another limitation of our model is the computational cost. Al-
though we have implemented some parts of our spatio-temporal
segmentation model through parallel computing and its compu-
tational time is superior to those of the existing non-sequential
processing based compression methods, it requires further design
for a frame-by-frame segmentation update scheme towards the
real-time compression of 3D mesh animations in the future.
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‘Cloth’

max

bpvf=4.62
KG Error=0.51

«Our method’

bpvf=5.24 ! !![ bpvf=10.66
KG Error=2.62

‘Adapted Soft’

‘Original Soft’

bpvf=4.63
KG Error=1.26

bpvf=7.69
KG Error=5.86

KG Error=3.77
! !!! bpvf=10.02
KG Error=2.56

‘Adapted PCA’

‘Original Simple’

min

bpvf=4.96
KG Error=0.84

Figure 7: The reconstruction errors of the compression by using our method, ‘Adapted Soft’, ‘Adapted PCA’, ‘Original
Soft’ [Karni and Gotsman 2004] and the ‘Original Simple’ [Sattler et al. 2005]. The colorbar indicates the reconstruction er-

rors from low (blue) to high (red).

6 CONCLUSION

In this paper, we present a new 3D mesh animation compression
model based on spatio-temporal segmentations. Our segmentation
scheme utilizes a two-stages temporal segmentation and a two-
stages vertex clustering, which are greedy processes to exploit the
temporal and spatial redundancies, respectively. The main advan-
tage of our scheme is the automatic determination of the optimal
number of temporal segments and the optimal number of vertex
groups based on global motions and the local movements of in-
put 3D mesh animations. That is, our segmentation scheme can
automatically optimize the temporal redundancies and the spatial
redundancies for compression. Our experiments on various anima-
tions demonstrated the effectiveness of our compression scheme.
In the future, we would like to extend our spatio-temporal segmen-
tation scheme to handle various motion representations, which can
be potentially used for various motion-based animation searching,
motion editing, and so on.
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